

Sewer Collection System Master Plan

December 2006

Los Angeles Sacramento San Francisco San Jose Walnut Creek

February 16, 2007

Mr. Nick Ponticello, P.E. City Engineer City of Winters 318 First Street Winters, CA 95694

Subject: City of Winters Sewer Collection System Master Plan - Final

Dear Mr. Ponticello:

RMC Water and Environment is pleased to submit this Final Sewer Collection System Master Plan for the City of Winters, reflecting approval of the document by City Council on February 6, 2007. This Master Plan presents the comprehensive evaluation of the capacity of the City's sanitary sewer collection system and recommends sanitary sewer collection system improvement projects necessary to address the City's existing and future wastewater collection needs.

We greatly appreciate the support and guidance received from the City's engineering and operations staff throughout the study. Their input and contributions were critical in developing the recommendations presented in this Sewer Collection System Master Plan.

Sincerely,

Alum E

Glenn E. Hermanson, P.E. Project Manager

2868 Prospect Park Drive Suite 130 Rancho Cordova, CA 95670 ph: 916.273.1500 fax: 916.273.1501 www.rmcwater.com

Innovative Solutions for Water and the Environment

EXECUTIVE SUMMARY

This 2006 Sewer Collection System Master Plan is an update to the 1992 Sewer Master Plan (CH2M Hill, 1992). The 1992 Sewer Master Plan defined the sanitary sewer system improvements necessary to accommodate the City's future land use development plans based on the City's 1992 General Plan. In addition, the 1992 Sewer Master Plan addressed wastewater treatment and called for construction of a new, relocated wastewater treatment facility. In 1997, the City approved the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report," as prepared by Larry Walker Associates, which provides for the expansion of the existing wastewater treatment facilities. This 2006 Sewer Collection System Master Plan does not address wastewater treatment facilities, but rather, supplements the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report." Together, therefore, this 2006 Sewer Collection System Master Plan Addresse Plan – Wastewater Treatment Facilities, Final Report." Together, therefore, this 2006 Sewer Collection System Master Plan Addresse Plan, along with the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report." Together, therefore, this 2006 Sewer Collection System Master Plan, along with the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report." Together, therefore, this 2006 Sewer Collection System Master Plan, along with the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report." Together, therefore, this 2006 Sewer Collection System Facilities, Final Report.

The objectives of this 2006 Sewer Collection System Master Plan are fourfold:

- 1. To create a computerized hydraulic model of the sewer system using H_2OMAP Sewer Pro, Version 5.0;
- 2. To identify existing and future deficiencies within the existing sewer collection and pumping system network;
- 3. To master plan the future sewer collection system network for buildout expansion of the City within the urban service boundary; and
- 4. To update the Capital Improvement Program.

ES.1 Capital Improvement Program

A summary of the sewer capital improvement projects that are recommended to correct potential wet weather conveyance and pumping capacity deficiencies under existing and future conditions is provided in Table ES-1 and shown in Figure ES-1.

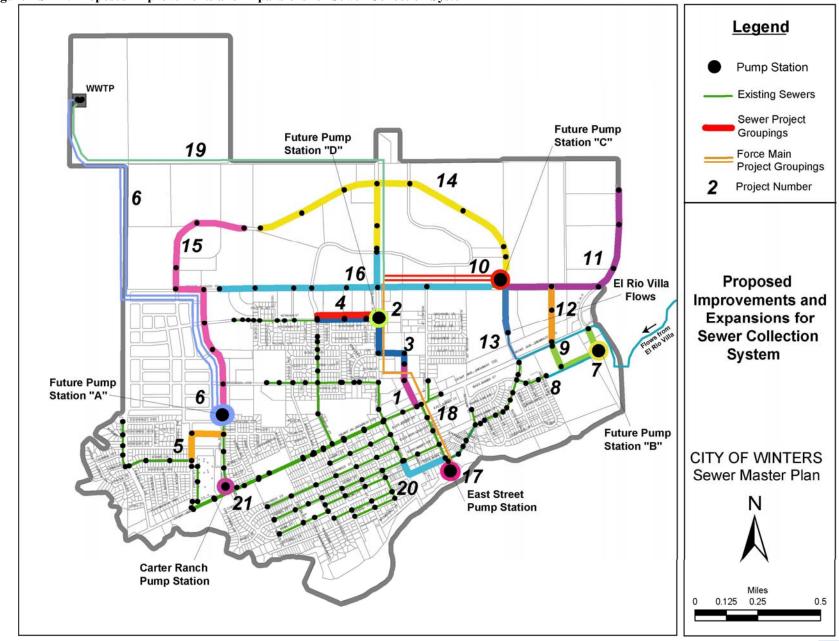

PROJECT NO.	DESCRIPTION	FIRM CAPACITY ^a (gpm)	LENGTH (ft)	ESTIMATED CAPITAL COST ^b
Existing Ca	apacity Deficiency Projects			
1	Dutton Street Sewer Upsize		950	\$201,000
		Subtotal	950	\$201,000
Proposed I	Pump Station Expansion Projects			
2	Pump (Lift) Station on Railroad Avenue	106		\$465,000
6	Future Pump Station A for Southwest Area	1,240		\$1,859,000
0	Dual Force Mains from Future Pump Station A		16,100	\$2,089,000
7	Future Pump Station B for Gateway Area	310		\$930,000
8	Future Pump Station B Force Main		360	\$37,000
	Future Pump Station C for Northeastern Area	2,170		\$2,832,000
10	Dual Force Mains to Parallel E. Street PS Force Mains		5,200	\$804,000
47	East Street Pump Station Expansion	3,160		\$1,430,000
17	East Street Pump Station Instrumentation Updates			\$69,000
18	Parallel E. St. PS Force Main Segment #1		4,800	\$1,030,000
19	Parallel E. St. PS Force Main Segment #2		10,100	\$2,423,000
21	Carter Ranch PS Upgrade	125		\$189,000
		Subtotal	29,860	\$14,156,000
Future Col	ection System Expansion Projects			
3	Neimann/Railroad/Dutton Sewers		2,760	\$341,000
4	Parallel Sewers on Neimann Street (to Pump Station D)		1,290	\$160,000
5	Southwest Area Sewers		1,240	\$154,000
9	Gateway Area Sewers		1,860	\$230,000
11	Northeastern Area Sewers		4,350	\$829,000
12	Timbercrest Road Sewers		1,200	\$149,000
13	North Main Street Sewers		1,580	\$196,000
14	Main Street Loop Sewers		8,040	\$1,274,000
15	Eastern Main Street Sewers		6,280	\$1,059,000
16	Moody Slough Sewers		9,330	\$1,056,000
20	Railroad/East Abbey to Main Street Relief Sewer		1,175	\$398,000
		Subtotal	39,105	\$5,846,000
22 Master Plan Implementation and Management ^c				
	·	TOTAL	69,915	\$21,214,000

Table ES-1: Summary of Capital Improvement Projects

^a Firm capacity is the capacity of the pump station with the largest pump not operating.

^b Rounded up to the nearest \$1,000.

^c Assume cost to be 5% of the total estimated capital cost for projects 1 through 21. A small portion of the cost includes additional engineering analysis for certain recommended projects.

ES.2 Additional Recommendations

Following are the recommendations that were developed related to the other objectives of this Master Plan.

ES.2.1 H₂OMAP SEWER SYSTEM HYDRAULIC MODEL

The H_2OMap computer model should be updated periodically to reflect changes in the sewer system and updated flow information.

ES.2.2 FLOW MONITORING PROGRAM

It is recommended to conduct a system-wide dry and wet weather temporary flow monitoring program to:

- refine the dry weather sewage generation factors for various land use categories;
- evaluate groundwater infiltration (GWI) and rainfall-dependent inflow/infiltration (RDI/I) rates;
- develop diurnal variation curves for different land use categories;
- develop the shape of the wet weather response hydrograph for different areas of the City;
- calibrate the model under fully dynamic conditions; and
- refine the system capacity analysis and recommended capital improvement projects

Refining the model with flow data could reduce the number or extent of the recommended sewer capacity improvement projects. The cost of a dry and wet weather flow monitoring program including dynamic modeling and refining the capital improvement projects would range between \$60,000 and \$90,000. If the instrumentation upgrade is performed before the flow monitoring is started, the cost of the flow monitoring program could be reduced.

ES.2.3 EAST STREET PUMP STATION AND FORCE MAIN EVALUATION

The East Street Pump Station (ESPS) and Force Main (ESFM) are critical components of the City's infrastructure. Currently, 100 percent of the City's sewage is pumped by the ESPS and conveyed by the ESFM. The pump station and force main were constructed in 1979 and the end of the useful life of some mechanical components is approaching. Even though the City did upgrade some of the electrical components at the ESPS several years ago, a detailed evaluation, including condition assessment and hydraulic analysis, of the ESPS and ESFM will allow proper planning for replacement or rehabilitation, as necessary. As part of the hydraulic analysis, a temporary pressure gauge will need to be installed for the ESFM at a location near the Wastewater Treatment Facility. This evaluation should be performed after the ESPS Instrumentation Upgrade Project (Project 17) and prior to the ESPS expansion.

ES.2.4 FORCE MAIN RUPTURE PLAN(S)

A detailed Force Main Rupture Plan is recommended for the East Street Force Main, as well as the force mains from other recommended future pump stations. The development of force main rupture plans will reduce or eliminate the impacts of a sewage spill if a rupture were to occur. Ruptures in force mains are events that may occur for a variety of reasons, the most common of which is being accidentally broken by a contractor excavating in the vicinity of the force main.

ES.2.5 SEWER SYSTEM MANAGEMENT PLAN (SSMP)

Historically, Winters has relatively few sewer overflows. Sewer overflows can be caused by many factors including, root clogs, grease clogs, broken pipes, wet weather infiltration, pump station mechanical failure, vandalism, illegal disposal of wastes, and power failures. State regulators have recently adopted a statewide Waste Discharge Requirement (WDR) that will require all collection system agencies to prepare a Sewer

System Management Plan. Because of the broad range of factors that cause overflows, the WDR is also broad and regulates aspects of capacity, management, operations, and maintenance, or CMOM for short. Winters should proactively meet the requirements of the SSMP.

ES.2.6 MISCELLANEOUS

- Uncover manholes that are paved over on Grant Avenue.
- Survey the invert elevations of SP-1290 on Grant Avenue. See Section 5.1.2.1 for more discussion.
- Reconfigure manholes MH-2192 on Neimann Street and Hemenway Street and MH-2094 on Taylor Street. See Section 5.1.2.4 for more discussion.
- Implement a cleaning and televising inspection program of sewer lines.

ACKNOWLEDGEMENT

The 2006 Sewer Collection System Master Plan represents a collaborative effort between RMC and the City of Winters. We would like to acknowledge and thank the following key personnel from the City whose invaluable knowledge, experience, and contributions were instrumental in the preparation of this Master Plan.

John Donlevy, Jr. – City Manager Charles Simpson – Director of Public Works Karen Honer – Director of Public Works (former) Nicholas Ponticello – City Engineer, Ponticello Enterprises Consulting Engineers, Inc. Alan Mitchell – Project Manager, Ponticello Enterprises Consulting Engineers, Inc. City Operations/Field Staff

TABLE OF CONTENTS

CHAP	FER 1	INTRODUCTION	1-1
1.1 1.2 1.3	Objec Previ 1.3.1 1.3.2	ECT PURPOSE CTIVES AND SCOPE IOUS STUDIES Sewer Master Plan Other City Studies RT CONTENT	
CHAP	FER 2	LAND USE	2-1
2.1	LAND	USE DATABASE	2-1
2.2	EXIST	ING AND FUTURE LAND USE	2-1
CHAP	FER 3	HYDRAULIC MODEL DEVELOPMENT	3-1
3.1		LOP PHYSICAL MODEL	
3.2		WATER FLOW COMPONENTS	
3.3		TEWATER DESIGN FLOW CRITERIA	
	3.3.1	Hydraulic Model	
3.4	3.3.2 WAST	Design Flow (PWWF)	
CHAP		SEWER COLLECTION DESIGN CRITERIA	
4.1 4.2		DUCTION 1ARY OF RECOMMENDED MASTER PLAN DESIGN CRITERIA	
4.2	SUMN 4.2.1	ARY OF RECOMMENDED MASTER PLAN DESIGN CRITERIA Manning's 'n' Factor	
	4.2.1	Manning's 'n Factor Minimum Pipe Diameter	
	4.2.2	Maximum Allowable Flow Depth	
	4.2.4	Minimum Velocity/Slope	
	4.2.5	Maximum Velocity	
	4.2.6	Maximum Collector Sewer Depth	
	4.2.7	Minimum Pipe Depth	
	4.2.8	Design Requirements at Increases in Pipe Size	
	4.2.9	Headloss in Manholes	
	4.2.10	5 0 5	
		Inverted Siphons SEWER SYSTEM ANALYSIS & RECOMMENDATIONS	
	FER 5		
5.1		ING WET WEATHER CONVEYANCE NEEDS	
	5.1.1	Capacity Deficiency Criteria	
5.2	5.1.2	Conveyance Capacity Deficiencies & Recommendations STATION AND FORCE MAIN EVALUATIONS & RECOMMENDATIONS	
5.2	5.2.1	Pump Station Evaluation and Recommendations	
	5.2.1	Force Main Evaluations and Recommendations	
5.3		RE COLLECTION SYSTEM EXPANSIONS	
5.4	SUMM	IARY OF PROPOSED SEWER PROJECTS	5-37
CHAP	FER 6	CAPITAL IMPROVEMENT COSTS	6-1
6.1	Cost	ESTIMATION CRITERIA	6-1
	6.1.1	Sanitary Sewer and Pump Station Costs	6-1
	6.1.2	Construction Contingency and Project Implementation Multiplier	
	6.1.3	Coordination With Drainage, Water, and Road Improvement Projects	6-1

Table of Contents

6.2	CAPAG	CITY IMPROVEMENT & EXPANSION PROJECTS	6-1
6.3	Addit	TONAL RECOMMENDATIONS	
	6.3.1	H ₂ OMap Sewer System Hydraulic Model	6-3
	6.3.2	Flow Monitoring Data	6-3
		East Street Pump Station and Force Main Evaluation	
	6.3.4	Force Main Rupture Plan(s)	6-4
	6.3.5	Sewer System Management Plan (SSMP)	6-4
	6.3.6	Miscellaneous	6-4

APPENDICES

- APPENDIX A DETAILED CIP COST ESTIMATE INFORMATION
- APPENDIX B GIS & H2OMAP Sewer Files and Miscellaneous Modeling Information
- APPENDIX C H2OMAP WATER FILES (COMPUTER MODEL OF FORCE MAINS) AND MISCELLANEOUS FORCE MAIN MODELING INFORMATION
- $\label{eq:appendix} Appendix \ D \ East \ Street \ Pump \ Station \ Pump \ Curves$
- $\label{eq:appendix} Appendix \ E \ Force \ Main \ Valving \ configurations$
- $\label{eq:appendix} Appendix \ F \ Technical \ Memoranda$
- $\label{eq:appendix} Appendix \ G \ -CD \ \text{containing Final Report and all Appendices}$

LIST OF TABLES

TABLE ES-1:	SUMMARY OF CAPITAL IMPROVEMENT PROJECTS	ES-2
TABLE 2-1:	LAND USE CATEGORIES AND ASSOCIATED DENSITIES	2-6
TABLE 2-2:	EXISTING AND BUILDOUT LAND USE ACREAGE BY CATEGORY	2-7
TABLE 3-1:	2002 AND 1992 ADWF FACTOR AND FLOW RATE BY LAND USE CATEGORY	3-7
TABLE 3-2:	ADWF FOR PQP PARCELS	3-8
TABLE 3-3:	LAND USE CATEGORIES AND EXISTING AND BUILDOUT ADWF FLOWS	3-11
TABLE 3-4:	WASTEWATER FLOW PROJECTIONS	3-12
TABLE 4-1:	RECOMMENDED MASTER PLAN DESIGN CRITERIA	4-1
TABLE 4-2:	COMPARISON OF MANNING'S N, MINIMUM PIPE SIZE, AND MAXIMUM VELOCITY	
	CRITERIA OF VARIOUS AGENCIES	4-3
TABLE 4-3:	COMPARISON OF MINIMUM VELOCITY CRITERIA OF VARIOUS AGENCIES	4-4
TABLE 4-4:	MINIMUM PIPE SLOPES FOR VARIOUS AGENCIES	4-5
TABLE 4-5:	BASIS OF MINIMUM TRUNK SHED SLOPES	4-6
TABLE 4-6:	RECOMMENDED MINIMUM SLOPES	4-6
TABLE 4-7:	COMPARISON OF FORCE MAIN VELOCITY CRITERIA OF VARIOUS AGENCIES	4-9
TABLE 5-1:	CAPACITY DEFICIENCY CRITERIA	5-1
TABLE 5-2:	CAPACITY DEFICIENCIES AND PIPE CHARACTERISTICS UNDER QUASI-EXISTING	
	CONDITIONS	5-4
TABLE 5-3:	RECOMMENDED PROJECTS FOR EXISTING SEWERS	5-19
TABLE 5-4:	PROPOSED PUMP STATION EXPANSION PROJECTS	5-29
TABLE 5-5:	FUTURE SEWER EXPANSION PROJECTS	5-33
TABLE 5-6:	ITEMIZATION OF ALL SEWER IMPROVEMENT AND EXPANSION PROJECTS	5-35
TABLE 6-1:	ESTIMATED CAPITAL COSTS FOR SEWER CONVEYANCE IMPROVEMENT	
	AND EXPANSION PROJECTS	6-2

LIST OF FIGURES

FIGURE ES-1-1:	PROPOSED IMPROVEMENTS AND EXPANSIONS FOR SEWER COLLECTION SYSTEM	ES-3
FIGURE 1-1:	CITY OF WINTERS LOCATION	1-1
FIGURE 1-2:	MASTER PLAN STUDY AREA AND THE CITY'S SEWER COLLECTION SYSTEM	1-2
FIGURE 1-3:	MASTER PLAN FLOWCHART	1-3
FIGURE 1-4:	1992 Sewer Master Plan Recommended Projects	1-4
FIGURE 2-1:	EXISTING LAND USE MAP	2-2
FIGURE 2-2:	BUILDOUT LAND USE MAP	2-4
FIGURE 3-1:	METHODOLOGY FOR RECOMMENDED FUTURE COLLECTION SYSTEM	3-1
FIGURE 3-2:	MODEL LAYOUT OF EAST STREET PUMP STATION	3-2
FIGURE 3-3:	LOAD ALLOCATION FOR RECOMMENDED FUTURE COLLECTION SYSTEM	3-3
FIGURE 3-4:	WASTEWATER FLOW COMPONENTS	3-4
FIGURE 3-5:	PUBLIC/QUASI-PUBLIC PARCELS	3-7
FIGURE 3-6:	DESIGN VALUES USED TO SIZE COLLECTION SYSTEM VS. WWTP MASTER PLAN	3-13
FIGURE 5-1:	POTENTIAL WET WEATHER CONVEYANCE CAPACITY DEFICIENCIES LOCATIONS	5-3
FIGURE 5-2:	PROFILE FOR LOCATION A	5-5
FIGURE 5-3:	PROFILE FOR LOCATION B	5-6
FIGURE 5-4:	PROFILE FOR LOCATION C	5-7
FIGURE 5-5:	PROFILE FOR LOCATION 2-4	5-8
FIGURE 5-6:	PROFILE FOR LOCATION E	5-9
FIGURE 5-7:	PROFILE FOR LOCATION F	5-10
FIGURE 5-8:	PROFILE FOR LOCATION G	5-11
FIGURE 5-9:	PROFILE FOR LOCATION H	5-12
FIGURE 5-10:	PROFILE FOR LOCATION 1 (QUASI-EXISTING CONDITIONS)	5-13
FIGURE 5-11:	PROFILE FOR LOCATION 1 (RECOMMENDED FUTURE CONDITIONS)	5-14
FIGURE 5-12:	MODELING RESULTS FOR RECOMMENDED FUTURE COLLECTION SYSTEM	5-16
FIGURE 5-13:	PROFILE FOR LOCATION B	5-15
FIGURE 5-14:	PROFILE FOR LOCATION C	5-17
FIGURE 5-15:	PROFILE FOR LOCATION D	5-18

FIGURE 5-16:	PROFILE FOR LOCATION I	5-19
FIGURE 5-17:	Profile for P1	5-21
FIGURE 5-18:	Profile for P2	5-21
FIGURE 5-19:	Profile for P3	5-22
FIGURE 5-20:	Profile for P4	5-22
FIGURE 5-21:	Profile for P5	5-23
FIGURE 5-22:	Profile for P6	5-23
FIGURE 5-23:	Profile for P7	5-24
FIGURE 5-24:	PUMP STATION SEWERSHEDS	5-26
FIGURE 5-25:	PDWF IN FORCE MAINS AT BUILDOUT	5-30
FIGURE 5-26:	PWWF IN FORCE MAINS AT BUILDOUT	5-31
FIGURE 5-27:	Phasing of Force Mains to Buildout	5-32
FIGURE 5-28:	PROPOSED IMPROVEMENTS AND EXPANSIONS FOR SEWER COLLECTION SYSTEM	5-38
FIGURE 5-29:	PROJECTS 2 THROUGH 6	5-39
FIGURE 5-30:	Projects 7 through 13	5-40
FIGURE 5-31:	PROJECTS 1, 3, 17, 18, AND 20	5-41
FIGURE 5-32:	PROJECTS 14, 15, 16, AND 19	5-42

ABBREVIATIONS

ADWF	average dry weather flow
BWF	base wastewater flow
CCI cfs CIP City	construction cost index cubic feet per second capital improvement project City of Winters
DU	dwelling unit
ENR ESPS ESFM	engineering news record East Street pump station East Street force main
ft ft/s FY	feet feet per second fiscal year
gal GIS gpd gpd/person gpd/acre GWI	gallon geographical information system gallons per day gallons per day per person gallons per day per acre groundwater infiltration
in I/I	inch infiltration and inflow
LF	linear feet
MG MGD	million gallons million gallons per day
NA	not applicable
PDWF PF PS PWWF	peak dry weather flow peaking factor pump station peak wet weather flow
RDI/I	rainfall dependent infiltration and inflow
sqft	square feet
ТМ	technical memorandum
WWTF	wastewater treatment facilities

CHAPTER 1 INTRODUCTION

Chapter Synopsis: This chapter presents the purposes, objectives, and scope for the 2006 Sewer Collection System Master Plan. It also summarizes previous sewer master plans and studies prepared by the City that are pertinent to the sanitary sewer system.

This 2006 Sewer Collection System Master Plan is an update to the 1992 Sewer Master Plan (CH2M Hill, 1992). The 1992 Sewer Master Plan defined the sanitary sewer system improvements necessary to accommodate the City's future land use development plans based on the City's 1992 General Plan. In addition, the 1992 Sewer Master Plan addressed wastewater treatment and called for construction of a new, relocated wastewater treatment facility. In 1997, the City approved the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report," as prepared by Larry Walker Associates, which provides for the expansion of the existing wastewater treatment facilities. This 2006 Sewer Collection System Master Plan does not address wastewater Treatment facilities, but rather, supplements the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report." Together, therefore, this 2006 Sewer Collection System Master Plan, along with the "Revision to the Sewer System Master Plan – Wastewater Treatment Facilities, Final Report," supercedes (i.e., replaces) the 1992 Sewer Master Plan.

The City of Winters (City) is located in the southwestern corner of Yolo County, immediately north of the Solano County line and just east of the Vaca Mountain range. As shown in **Figure 1-1**, the City lies approximately 34 miles west of the state capital, Sacramento, and approximately 10 miles north of Vacaville. The City is bordered on the south by Putah Creek, which has a year round flow emanating from Monticello Dam 9 miles to the west. Monticello Dam backs up Lake Berryessa and is a major recreation area, drawing tourists from the San Francisco Bay Area and elsewhere.¹

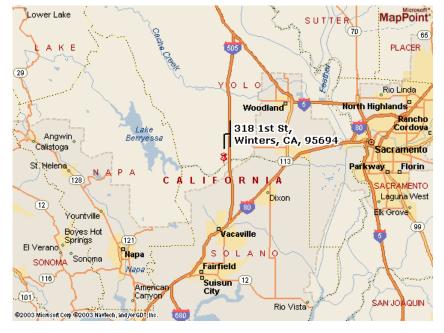


Figure 1-1: City of Winters Location

The settlement of the Winters area began in 1842 on the south side of Putah Creek. In 1875, the Vaca Valley Railroad Company sought financial assistance from Theodore Winters and others to build a railroad bridge across Putah Creek to extend their line to the north bank of the Creek. In the process, the Railroad Company laid out a forty acre town, named it for Theodore Winters, and thus created the City of Winters.¹

The area studied by this Master Plan effort is the City's urban limit area shown in Figure 1-2. The urban limit boundary is defined based on the 1992 General Plan and subsequent General Plan amendments.

¹ Excerpted and summarized from the City of Winters website at http://www.cityofwinters.org/

The City's sanitary sewer system collects the wastewater flows from approximately 1,980 acres within the City planning area and El Rio Villa, a small subdivision located approximately 0.7 miles east and outside of the City's urban limit boundary. Within the urban limit boundary, the City's sewer collection system serves a population of approximately 7,300 people through approximately 136,620 linear feet (LF) of sewers.² Figure 1-2 shows the alignment, size of sewers, and location of the three pump stations that make up the City's existing sewer collection system. The El Rio Villa Pump Station (PS) and force main are owned by the Yolo County Housing Authority and maintained by the City through a 1979 maintenance/use-agreement.

Currently, all of the City's wastewater flows are conveyed to the East Street Pump Station (ESPS). Wastewater flows generated by the El Rio Villa subdivision are conveyed to the ESPS via the El Rio Villa PS and force main. The ESPS, in turn, pumps all the flow collected northward to the Wastewater Treatment Facility (WWTF) through a 14-inch force main. The Carter Ranch Pump Station shown in Figure 1-2 is a relatively new pump station. This pump station was constructed to convey future flows from the Carter Ranch subdivision northward to a future collection facility. Currently, all flows from the Carter Ranch area are pumped to the gravity sewer on Grant Avenue. The Walnut Lane Pump Station pumps flows from the Almond Ranch subdivision.

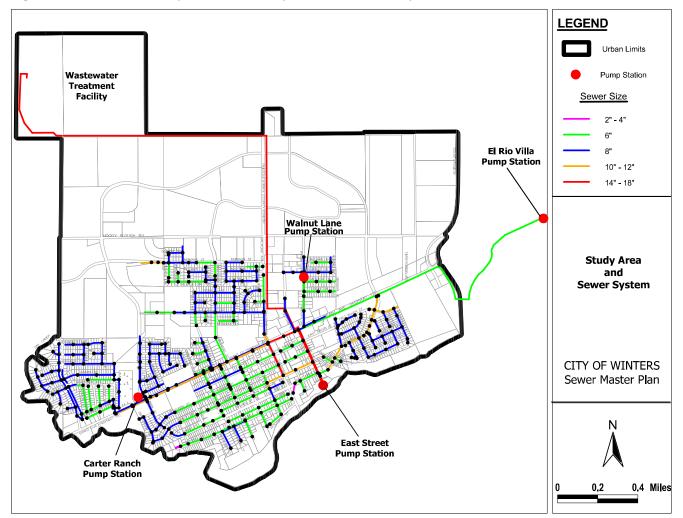


Figure 1-2: Master Plan Study Area and the City's Sewer Collection System

² According to the State Department of Finance (<u>http://www.dof.ca.gov/HTML/DEMOGRAP/E-1text.htm</u>), Winters Population estimate for 2006 is 7,300. The approximate lineal feet of sewer were calculated based on GIS information.

1.1 **Project Purpose**

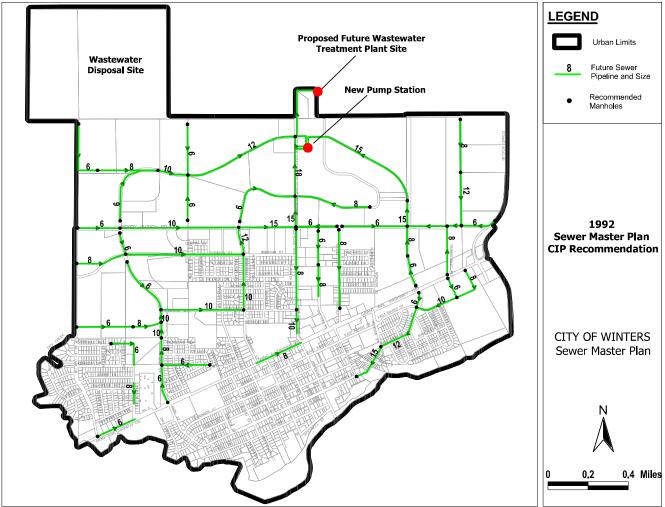
This Master Plan is an update and re-evaluation of the 1992 Sewer Master Plan (CH2M Hill, 1992) and provides information required for the City planning and financial efforts. The 1992 Sewer Master Plan defined the sanitary sewer system improvements necessary to accommodate the City's future land use development plans based on the City's 1992 General Plan. However, not all of the sewer capacity improvements recommended in the 1992 Sewer Master Plan Update have been implemented (see Figure 1-4), and new land use development/amendment patterns for the City have since been defined that could stress the system beyond the 1992 assumptions.

1.2 Objectives and Scope

The objectives of this revised 2006 Sewer Collection System Master Plan are fourfold:

- 1. To create a computerized hydraulic model of the sewer system using H₂OMAP Sewer Pro, Version 5.0;
- 2. To identify existing (September 2002) and future deficiencies within the existing sewer collection and pumping system network;
- 3. To master plan the future sewer collection system network for buildout expansion of the City within the urban service boundary; and
- 4. To update the Capital Improvement Program.

To achieve these objectives, the scope of work was divided into six tasks as shown in **Figure 1-3**. Tasks 1 through 6 are discussed in Chapters 2 through 7 of this report, respectively.


Figure 1-3: Master Plan Flowchart

1.3 Previous Studies

The City had previously prepared a master plan for the sanitary sewer system in 1992. Since then, there have been various supplemental master plan studies for proposed expansions to the sewer collection system, including the Gateway, Greyhawk, Winters Highland, and Callahan Developments. Recently, the City also completed two planning studies pertinent to this Master Plan: 1) Draft Moody Slough Subbasin Drainage Master Plan, and 2) Draft Putah Creek, Dry Creek Subbasins Drainage Master Plan.

1.3.1 Sewer Master Plan

The 1992 master planning effort conducted by CH2M Hill developed a capital improvement program to accommodate the City's future land use development plans to the year 2010. **Figure 1-4** shows the location of the 1992 Sewer Master Plan recommended projects.

Source: CH2M Hill, 1992

1.3.2 OTHER CITY STUDIES

As part of this Master Plan, the consultant team also reviewed two studies that the City recently completed to identify potential multipurpose projects.

1.3.2.1 Gateway, Greyhawk, Winters Highland, and Callahan Developments

Utility plans for these proposed developments were reviewed to ensure that all alternatives were considered prior to developing the recommended future sewer collection system master planned facilities.

1.3.2.2 Moody Slough, Putah Creek, and Dry Creek Subbasins Drainage Master Plans

The Drainage Master Plans were completed in June and July 2005 (Draft versions) by Wood Rodgers. The studies included the identification of "phased drainage master planned facilities to mitigate increases to existing flooding problems and accommodate proposed development" within three major drainage subbasins within the City. The Draft Drainage Master Plans were reviewed to ensure that the elevation and alignment of the recommended sewer collection system master planned facilities would not conflict with the drainage master planned facilities.

1.4 Report Content

This report is divided in six chapters, as outlined below:

- CHAPTER 1 INTRODUCTION (this introduction)
- CHAPTER 2 LAND USE, describes the available land use databases and discusses existing and future land use data to be used in Chapter 3.
- CHAPTER 3 HYDRAULIC MODEL DEVELOPMENT, presents the model development, the basis for sanitary flow projections for the City based on land use information from Chapter 2, and calibration process.
- CHAPTER 4 SEWER COLLECTION DESIGN CRITERIA, summarizes the design criteria used in the evaluation of hydraulic adequacy of existing facilities, and for establishing the alignment and size of future facilities.
- CHAPTER 5 SEWER SYSTEM ANALYSIS & RECOMMENDATION, summarizes the wet weather conveyance and pumping needs identified using the hydraulic model developed in Chapter 4.
- CHAPTER 6 CAPITAL IMPROVEMENT COSTS, presents the estimated costs for recommended CIP projects based on the analysis conducted in Chapter 5.

This report also contains five appendices.

- APPENDIX A DETAILED CIP COST ESTIMATE INFORMATION
- APPENDIX B GIS & H2OMAP SEWER FILES AND MISCELLANEOUS MODELING INFORMATION
- APPENDIX C H2OMAP WATER FILES (COMPUTER MODEL OF FORCE MAINS) AND MISCELLANEOUS FORCE MAIN MODELING INFORMATION
- APPENDIX D EAST STREET PUMP STATION PUMP CURVES
- APPENDIX E FORCE MAIN VALVING CONFIGURATIONS

CHAPTER 2 LAND USE

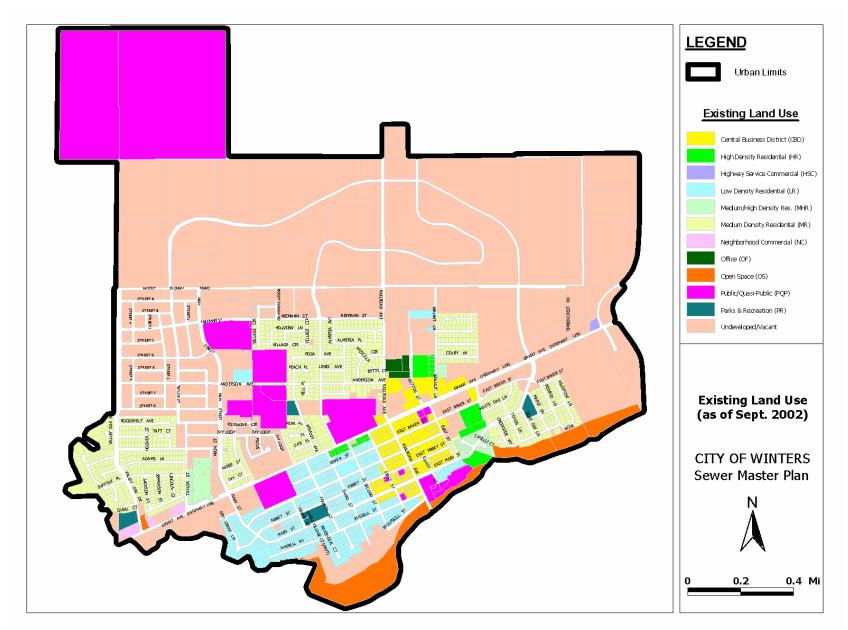
Chapter Synopsis: The identification of the most appropriate land use database and the evaluation of the existing and future land use scenarios are critical tasks when embarking on the sewer collection system master planning process. It is the key for developing the existing and future base wastewater flow component of the wastewater flow.

This section provides a summary of the land use databases that were considered and presents the existing (as of September 2002) and buildout land use estimates that were used for developing the 2006 Sewer Collection System Master Plan.

2.1 Land Use Database

The methodology used to generate base wastewater flows in H_2OMap Sewer included using Arcview to populate flow from individual parcels based on land use categories. H_2OMap Sewer was then used to link each parcel to its loading manhole. This method makes it easy to modify local land use designations and evaluate the impact on base wastewater flow generation and conveyance capacity needs. The parcel land use maps and databases were developed by incorporating the following information:

- Yolo County geographical information system (GIS) parcels shapefile/layer. The horizontal projection, in feet, for this shapefile and Sewer Collection System Master Plan project is California State Plan Zone II, NAD 83.
- City of Winters Zoning Map dated June 2003
- Orthorectified aerial photo of the City flown on September 5, 2002
- City of Winters General Plan
- Tentative Map and Preliminary Utility Plans for Winters Highland and Callahan Developments dated November 2003.

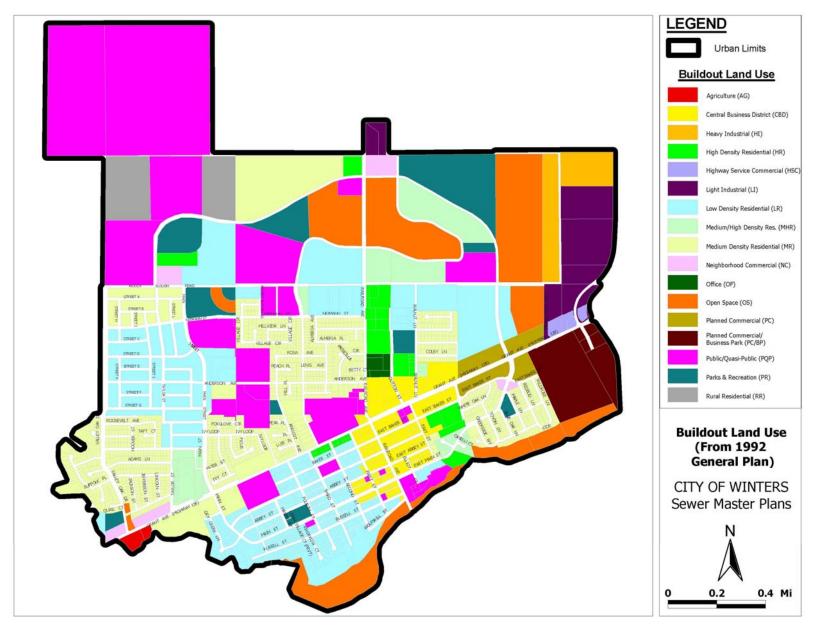

The Yolo County GIS parcel layer was used as a basis to import land use based wastewater flow information (including parcel acreage, land use type and characteristics) into the hydraulic model (see Chapter 3). It was necessary to develop the linkage between the parcel database (i.e. the parcel centroids) and the sanitary sewer system (i.e. nodes/manholes) in order to import the data. By using the City's sanitary sewer collection system atlas and record drawing information, the parcel centroids were linked to the nearest manhole or node in the model. The City's engineering staff provided input and reviewed the linkage. This parcel-manhole linkage is shown in Figure 3-3.

2.2 Existing and Future Land Use

Land use information per parcel is used in combination with unit base wastewater flow factors (sewage generation factors) to distribute sanitary flows in the sewer system hydraulic model. Unit base wastewater flow factors are usually expressed in gallon per day per net acre or per person and vary with the type of land use.

A list of land use categories was developed to reflect existing and future land uses with similar wastewater flow generation characteristics. This classification is based on the General Plan land use and zoning designations. A total of 18 land use categories were identified. The resulting existing land use map is presented in **Figure 2-1**; the database for existing and future land use maps are available in electronic format in Appendix B.

Figure 2-1: Existing Land Use Map



The following information was combined to create the land use database:

- **Parcel Layer** The City of Winters' parcel layer was extracted from the Yolo County parcel shapefile and used as a base for developing the land use map.
- **Tentative Maps for Winters Highland and Callahan Developments** These tentative maps were overlaid on the parcel layer to transfer planned roadway and block designations onto the parcel maps.
- Zoning Map The zoning map provided by the City was overlaid on the parcel map using ArcView GIS Version 3.1 to transfer planned roadway information for vacant parcels at the north end of the City from the Zoning Map to the parcel layer. Some manual adjustments were required, as the zoning map did not overlay exactly on the parcel map. Next, the land use information was created as an attribute of the parcels and zoning designations were transferred to the parcel map as land use categories for the future/buildout scenario. The existing land use map was then created manually using additional information listed below.
- **Orthorectified Aerial Photo** The 2002 citywide aerial photo was overlaid on the land use map to identify undeveloped/vacant and under developed areas.
- **General Plan** The General Plan was used to identify possible areas where the actual land use differs from the zoning information.
- **City Input** City staff identified and characterized the public-quasi-public (PQP) land use areas.

The buildout land use map is presented in Figure 2-2.

Figure 2-2: Buildout Land Use

Table 2-1 provides the list of land use and zoning categories and associated density. The densities were used to estimate the number of persons or constructed area per parcel since this information is not an attribute of the parcel database. **Table 2-2** summarizes the acreage for each land use category, calculated based on parcel size information from the developed land use database.

For the future (i.e. buildout) scenario, the consultant team and City staff agreed that the most conservative scenario leading to the highest base wastewater flow generation should be considered for the purpose of this Master Plan. Key elements relevant to future land use are summarized below.

- Planning Scenarios Two scenarios were evaluated as part of this Master Plan: a long-term/buildout land use scenario and a near-term evaluation of the Winters Highland and Callahan Developments.
- Vacant Land Development Projects The majority of land within the urban service boundary of the City is currently undeveloped. Undeveloped lands are located to the north, east, and west areas of the City with future residential use being the largest usage category.
- Redevelopment Projects Areas within Winters are in redevelopment zones. Based on discussion with City staff, the sewage generation factors that are currently being used for the redevelopment areas will also be applicable after redevelopment and therefore, will not impact this Master Plan.

				EXISTING & BUILDOUT DENSITIES		
LAND USE CATEGORIES	CODE ZONING DESIGNATION		CODE	Residential Density ^a (DU/net acre)	Population Density ^c (Person/DU)	
Residential						
Rural	RR	Rural	RR	0.5 - 1.0	3.5	
Low Density	LR	Single Family (7,000 SF Ave. Min.)	R-1	1.1 - 7.3	3.5	
Medium Density	MR	Single Family (6,000 SF Ave. Min.)	R-2	5.4 - 8.8	3.0 / 3.5 ^d	
Medium/High Density	MHR	Multi-Family	R-3	6.1 - 10.0 ^b	3.0	
High Density	HR	High Density Multi-Family	R-4	10.1 - 20.0 ^b	3.0	
Commercial						
Neighborhood	NC	Neighborhood	C-1			
Central Business District	CBD	Central Business District	C-2			
Highway Service HS		Highway Service	C-2			
Planned	PC	Planned P-C				
Planned/Business Park	PC/BP	Planned/Business Park	PC/BP			
Industrial						
Light	LI	Light	M-1	N/A	N/A	
Heavy	HI	Heavy	M-2			
Other						
Agriculture A		General Agriculture	A-1			
Office C		Office	O-F			
Public/Quasi-Public	PQP	Public/Quasi-Public	PQP			
Parks & Recreation	PR	Parks & Recreation	PR			
Open Space	OS	Open Space	OS			

Table 2-1: Land Use Categories and Associated Densities

^a Source: City of Winters General Plan, May 1992, and General Plan Land Use Diagram Amendment Map, June 2003; Per conversation with the City, the Residential Density use for future residential developments on vacant parcels for the Sewer Collection System Master Plan shall be the densest allowed in the General Plan.

^{b.} The Residential Density used for MHR and HR parcels under existing conditions is 6.1 and 10.1 DU/net acre, respectively.

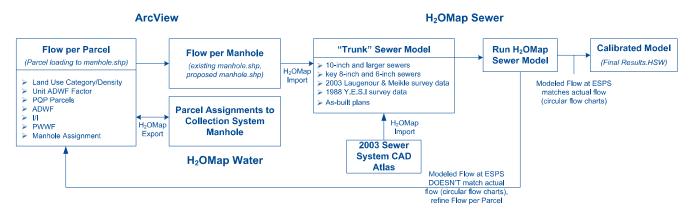
^{c.} Based on Section 7-2 of Winters Design Standards.

^{d.} The Population Density used for MR parcels under existing conditions is 3.0 person/DU

^{e.} Per conversation with the City, a floor-area-ratio (FAR) of 1.0 shall be applied for all non-residential parcels in calculating the proposed ADWF factor for the purpose of this master plan.

		EXISTING L	AND USE	BUILDOUT LAND USE		
LAND USE CATEGORIES	CODE	TOTAL NET ACREAGE ^a	% OF TOTAL	TOTAL NET ACREAGE ^a	% OF TOTAL	
Residential						
Rural	RR	0	0.0	47	2.6	
Low Density	LR	89	5.0	299	16.8	
Medium Density	MR	196	11.0	314	17.6	
Medium/High Density	MHR	16	0.9	69	3.9	
High Density	HR	15	0.8	41	2.3	
Sub-Total	1	316	17.7%	770	43.2%	
Commercial						
Neighborhood	NC	4	0.2	22	1.2	
Central Business District	CBD	46	2.6	63	3.5	
Highway Service	HSC	1	0.1	6	0.3	
Planned	PC	0	0.0	24	1.4	
Planned/Business Park	PC/BP	0	0.0	54	3.0	
Sub-Total	1	51	2.9%	169	9.4%	
Industrial						
Light	LI	0	0.0	65	3.6	
Heavy	HI	0	0.0	37	2.1	
Sub-Total	1	0	0.0%	102	5.7%	
Other						
Agriculture	AG	0	0.0	4	0.2	
Office	OF	4	0.2	5	0.3	
Public/Quasi-Public	PQP	280	15.7	399	22.4	
Parks & Recreation	PR	14	0.8	145	8.1	
Open Space	OS	49	2.7	188	10.6	
Vacant	VC	1068	60.0	0	0.0	
Sub-Tota	1	1,415	79.3%	741	41.6%	
	TOTAL	1,782	100%	1,782	100%	

Table 2-2: Existing (as of September 2002) and Buildout Land Use Acreage by Category


^a Estimated acreage based on land use GIS database (Appendix B). Net acreage excluded streets and roadways. Winters' urban limit line contains approximately 1980 gross acres. For this master plan, the existing net acreage (1,782 acres) is approximately 90 percent of the gross acreage. For a conservative analysis, it is assumed that the net acreage will not decrease for the buildout scenario even though more streets will be built within existing vacant parcels.

CHAPTER 3 HYDRAULIC MODEL DEVELOPMENT

Chapter Synopsis: This chapter discusses the hydraulic model development process used to ensure that the computer model represents 2002 conditions as accurately as possible. It also includes discussions on the wastewater flows input into H_2OMap Sewer for calibration and for performing sanitary sewer system analysis under existing and future conditions (see also Chapter 5).

The methodology used to develop the City's H₂OMap Sewer model is shown in Figure 3-1.

Figure 3-1: Methodology for Developing the City's H₂OMap Sewer Model

3.1 Develop Physical Model

A steady state/static hydraulic model of the trunk sewer collection system was developed as part of this Sewer System Master Plan using H₂OMap Sewer Pro, Version 5.0. The model of the trunk collection system included all sewers 10-inches and larger, key 8-inch sewers, and, in the downtown area, key 6-inch sewers. All existing manholes and sewers were named using a two letter identifier, MH for manhole and SP for sewer pipe, followed by a 4 digit number. Manholes and sewers south of Grant Avenue were assigned a 4 digit number in the 1,000 series while those located north of Grant Avenue were assigned a 4 digit number in the 2,000 series³. Proposed manhole and sewer improvements were also named using a two letter identifier, but followed by a 5 digit number in the 30,000 series. Hence, for example, an identifier of MH-1055 denotes an existing manhole located to the south of Grant Avenue while an identifier of SP-30103 denotes a new sewer. A 42 inch by 60 inch map showing the identification (ID) number of all manholes and sewers is included as a *.pdf file in the CD in Appendix B.

Flows from the Carter Ranch Pump Station were assigned to the 10-inch sewer main in Grant Avenue to flow to the East Street PS for the existing scenario and assigned to the 8-inch Main Street sewer to flow north to Future Pump Station A for the buildout scenario. The East Street Pump Station was modeled based on the as-built drawings provided by the City. **Figure 3-2** presents a schematic of the East Street Pump Station as it appears in H₂OMap Sewer. The Walnut Lane PS was not modeled since it is a minor "neighborhood" pump station. Flows from the El Rio Villa PS were assigned to manhole MH-1191 located at East Street and Grant Avenue to

³ Certain adjustments to the model since the draft completion of the 2005 Sewer Master Plan have resulted in minor changes to pipe and manhole numbering schemes for certain portions of the collection system. Refer to Appendix B for a complete list of pipe and manhole numbers.

flow to the East Street PS for the existing scenario and assigned to future MH-30082 on future Main Street Loop to flow to Future PS C for the buildout scenario.

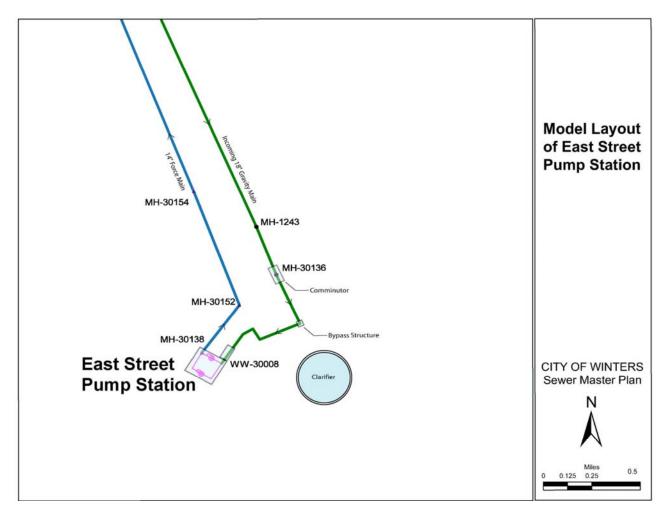
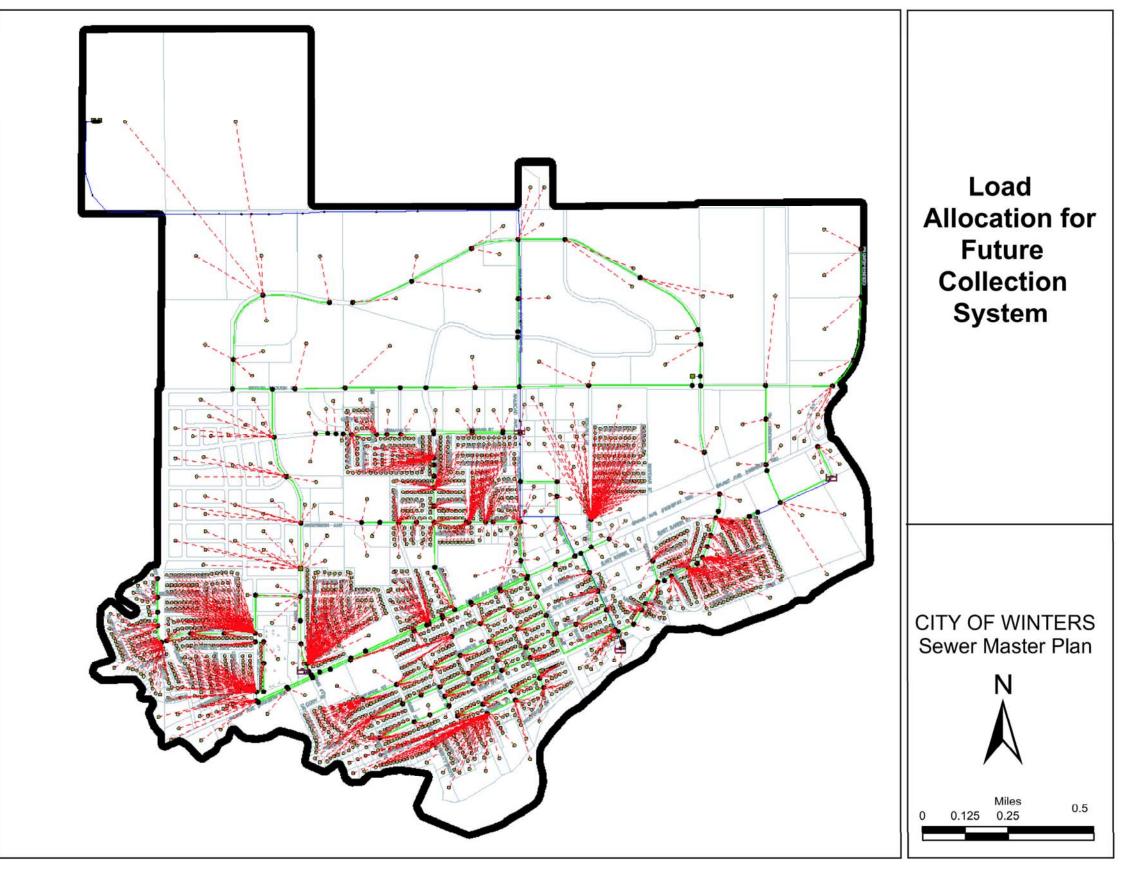


Figure 3-2: Model Layout of East Street Pump Station

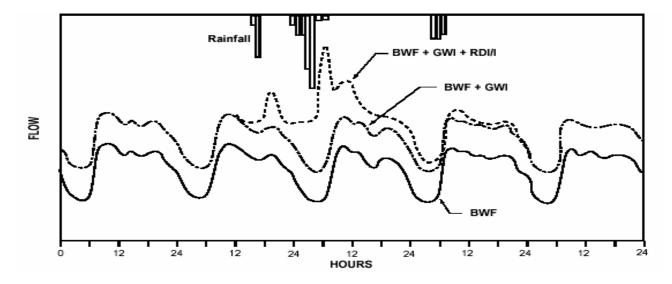
The following information was combined to create the physical (i.e. pipe, manhole, connectivity, inverts, etc.) H₂OMap Sewer model:


- **2003 Sewer System CAD Atlas** This file was created as part of this project from the City's existing sewer atlas and updated with as-built maps. The CAD file was imported into H₂OMap Sewer and used as a base for developing the existing trunk model with manhole and pipe diameter information.
- 2003 Laugenour & Meikle Survey Data Rim and invert elevations for 16 manholes, ground surface elevations for 14 locations, flowline elevations for 2 crossing locations along the Willow Canal, and flowline elevations for 3 crossing locations along Moody Slough were surveyed as part of the 2006 Sewer Collection System Master Plan Project to establish a base elevation grid for modeling the collection system. The survey datum and coordinate system is the same datum used by the Winters Highland and Callahan Development drawings (i.e. NAD 83 CA Zone 2 and NGVD 29). The survey information is attached in Appendix B.

- 1988 Yolo Engineers & Surveyors, Inc. (Y.E.S.I.) Survey Data Prior to being entered into the model, Y.E.S.I.'s surveyed invert information from a 1988 sewer collection system mapping project were adjusted to the datum used by Laugenour & Meikle in 2003 for the project.
- As-Built Plans Slopes, invert elevations, and pipe sizes for sewers constructed after 1988 were gathered from various as-built plans and adjusted to the datum used by Laugenour & Meikle in 2003 for this project.

The resulting GIS shapefile (Parcel loading to manhole.shp) was then imported into the H_2OMap Sewer model to assign flows from each parcel to their associated manholes in the collection system. Load allocations for the recommended future collection system are shown in **Figure 3-3**. The manhole assignments became an attribute of the GIS shapefile. The GIS shapefile was then summarized by flows per manhole and a new shapefile was created (existing modeled manhole.shp) and imported into the H_2OMap Sewer model for system analysis (Final Results.HSW). This methodology was illustrated previously in Figure 3-1. All GIS and H_2OMap Sewer files, a table listing all sewer loads by parcel, and a 42 inch by 60 inch map showing the identification (ID) number of all parcels are included in Appendix B

After the computer model was developed, estimated existing wastewater flows were input in the H_2OMap Sewer model and refined until the model was calibrated (i.e. modeled flows at the East Street PS matched with average recorded flows from the station's circular flow chart). Wastewater flows were subsequently developed using the methods described in the following sections.


Figure 3-3: Load Allocation for Recommended Future Collection System

3.2 Wastewater Flow Components

The basic components of wastewater flows are base wastewater flow (BWF) and infiltration/inflow (I/I). BWF is generally defined as the combined sanitary and processed flow contributed by residential, commercial, industrial, and institutional users of the sewer system. BWF rates vary based on the land use category, the hour of the day, and the day of the week. I/I is extraneous (i.e. non BWF) water that enters the sewer system. I/I includes dry and wet weather groundwater infiltration (GWI) and rainfall-dependent I/I (RDI/I). These components are described below and shown in **Figure 3-4**.

Figure 3-4: Wastewater Flow Components

As the term GWI implies, GWI is groundwater that infiltrates the sewer collection system via cracks and defects in pipes, pipe joints, and sewer structures such as manholes. As such, the magnitude of GWI depends upon the age and physical condition of the sewer system as well as the relative elevation of the groundwater table with respect to the sewer system. GWI tends to decrease during the dry summer and fall months and increases during the wet weather season. GWI rates can be considered constant over short time durations, since changes in the groundwater table occur relatively slowly (over a matter of weeks or months rather than hours).

In theory, BWF should not include dry weather GWI (or base infiltration). However, it is almost impossible, and not practical to accurately separate dry weather GWI from BWF based on actual measured flows. Therefore, the combination of BWF plus base infiltration is typically considered as a single component, termed average dry weather flow (ADWF). The term GWI is then primarily used to refer to the wet weather component of GWI, or the increase in GWI between the dry and wet weather season.

RDI/I is storm water that enters the sewer system in direct response to rainfall. RDI/I may enter the system directly by such means as cross-connections between the storm drain and sanitary sewer systems or through area drains and downspouts illegally connected to the sanitary sewer system. RDI/I may also enter the sewer system indirectly through sewer defects, particularly in shallow pipes such as private building laterals. RDI/I flows are directly related to the intensity and duration of rainfall, and generally rise quickly and recede very rapidly after the end of the storm. In addition to being dependent on rainfall, RDI/I is sensitive to soil moisture and tends to be most significant late in the wet season or after extended periods of rainfall when the soil is highly saturated.

3.3 Wastewater Design Flow Criteria

Since actual flow monitoring data was not available, there was no distinction made between weekday and weekend flows; and calibrated existing wastewater flows were used as "design" wastewater flows to perform the sanitary sewer system analysis. Furthermore, it was assumed that sewage generation factors and I/I rates will be the same for the existing and buildout land use scenarios, which assumes that future sewage generation characteristics will not be affected by factors such as water conservation, increase in sewer system age, etc. The criteria for simulating hourly, weekday, and seasonal flow variations are typically defined by the type of hydraulic model used. The hydraulic model selection and design flow criteria are described in the following sections.

3.3.1 HYDRAULIC MODEL

There are two types of hydraulic models used to simulate a sewer collection system: 1) steady state/static simulation and 2) extended period/dynamic simulation. Simulations from a steady state model represent a snapshot of the system performance at a given point in time under specific sewage generation conditions (i.e. ADWF, PDWF, PWWF, etc.). The extended period model is a continuous simulation of the change in system flow rate and is typically used to analyze the operational performance of the system over a 24-hour period. Dynamic modeling requires more extensive data input, including various 24-hour sewage generation patterns (also known as diurnal curves or wastewater profiles) for various land use categories within the sewer collection system.

Extended period simulations are typically used to evaluate operational studies, whereas steady-state models are used for sizing of sewers and pump stations. Hence, for the purpose of this master plan, a steady-state hydraulic model will be used in the system analyses to size sewers and pump stations.

3.3.2 DESIGN FLOW (PWWF)

Sewer system facilities must be sized to convey the peak flows in the system. Typically, the peak flow occurs during a wet weather event, and is therefore termed the peak wet weather flow (PWWF). Since the design storm peak can occur at any time of the day, it was assumed for a steady-state model and conservative master plan criteria that the peak I/I flow would coincide with the peak dry weather flow (PDWF). The design flow or PWWF for any segment of the sewer system is therefore calculated using the following formula:

Design Flow	$= \mathbf{PWWF}$
PWWF	= [ADWF * PF] + [I/I]
	= PDWF + I / I

The development of each of these flow components is discussed in detail in the following sections.

3.3.2.1 Average Dry Weather Flow (ADWF)

For the purpose of this master plan, BWF was combined with dry weather GWI to form a single component, termed average dry weather flow (ADWF). A specific unit ADWF factor (in gpd/acre or gpd/person) was combined with existing and buildout land use information (acreage or person) to calculate the ADWF input for each parcel in the previously developed land use database. Maps of the identified existing and buildout land uses are located in Chapter 2. The weekday flow variation shall be reflected in the peaking factor use for steady-state modeling analyses. A summary of the 1992 and 2002 ADWF factors, with associated land use categories are presented in **Table 3-1**.

Residential

Existing residential flows shall be generated based on a population method. Based on Section 7-2 of the City's June 2003 Design Standards, a per capita flow factor of 90 gallons per day (gpcd) will be used along with the

population density listed in the General Plan to generate flows for each developed residential parcel. Hence, existing residential ADWF flows is generated for each developed parcel using the following formula:

ADWF (gallons per day - gpd) = [Population Density]*[90 gpcd]

For vacant and existing developed high density residential area where more than one resident/house could be and are developed on each parcel, the flow will be generated based on an areal method using the unit areal flowrates (gpd/net acre). The proposed and 1992 Sewer System Master Plan areal ADWF factors are listed in Table 3-1 for comparison. Proposed residential areal ADWF factors were developed using the following formula:

ADWF Factor (gpd/net acre) = [Residential Density]*[Population Density]*[90 gpcd]

For existing scenarios, the residential density used for generating flows from existing developed high density residential parcels is the minimum density listed in the General Plan (i.e. 6.1 and 10.1 DU/acre for MHR and HR categories, respectively). To be conservative, it is assumed that vacant residential parcels will be developed according to the maximum residential density allowed for each category (i.e. 7.3 DU/net acre for LR, 20.0 DU/net acre for HR, 10.0 DU/net acre for MHR, etc.)

LAND USE CATEGORIES	CODE	2002 ADWF FACTOR ^a (gpd/net acre)	1992 ADWF FACTOR ^b (gpd/acre)
Residential			
Rural	RR	315 °	500
Low Density	LR	2,300 ^c	1,500
Medium Density	MR	2,772 °	2,000
Medium/High Density	MHR	1,647 / 2,700 ^{c, d}	2,500
High Density	HR	2,747 / 5,400 ^{c, d}	3,500
Commercial			
Neighborhood	NC	2,500	2,500
Central Business District	CBD	3,500	3,500
Highway Service	HSC	2,500	2,500
Planned	PC	2,500	2,000
Planned/Business Park	PC/BP	2,500	2,500
Industrial			
Light	LI	2,000	2,000
Heavy	HI	5,000	3,000
Other			
Agriculture	AG	0 ^e	n/a
Office	OF	2500	2500
Public/Quasi-Public	PQP	Varies ^f	Varies
Parks & Recreation	PR	200	200
Open Space	OS	0	n/a

Table 3-1: 2002 and 1992 ADWF Factor and Flow Rate by Land Use Category

^{a.} A floor area ratio (FAR) of 1.0 were applied for all non-residential parcels in calculating the ADWF factor.

^{b.} Source: City of Winters Sewer System Master Plan, CH2M Hill, May 1992.

^{c.} For each existing occupied/non-vacant residential parcel ADWF Factor = [Population Density]*[90 gpcd]. For existing occupied MHR and HR parcels ADWF Factor = [Residential Density]*[Population Density]*[90 gpcd] where from Table 2-1, the Residential Density used for MHR and HR parcels under existing condition is 6.1 and 10.1 DU/net acre, respectively. For vacant residential parcels, ADWF Factor for the buildout scenario = [maximum Residential Density]*[Population Density]*[90 gpcd]. Residential and Population Density are presented in Table 2-1.

^{d.} From note c above and Table 2-1, ADWF Factor for existing occupied MHR and HR parcels is 1,647 gpd/acre and 2,747 gpd/acre, respectively. ADWF Factor for the buildout scenario for MHR and HR parcels is 2,700 gpd/acre and 5,400 gpd/acre, respectively.

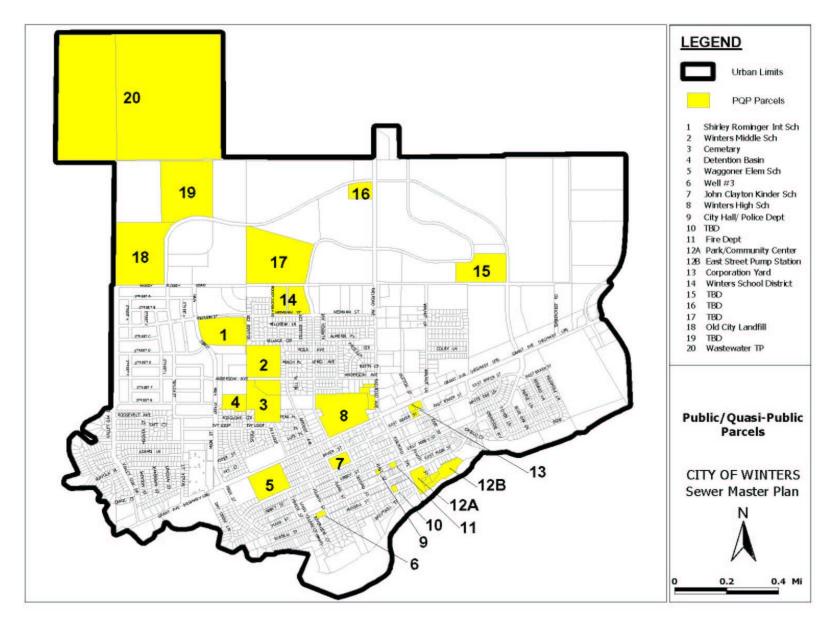
^{e.} Assumed Agriculture parcels are using septic tanks and are not connected to the sewer collection system.

^{f.} ADWF for PQP parcels were evaluated on a case by case basis and presented in Table 3-2.

The population density used to generate existing flow for the Medium Density (MR) Residential Land Use category was reduced from 3.5 person/DU, as listed in the General Plan, to 3.0 person/DU to arrive at a more realistic total existing daily flow value for the City. The other option for reducing flow was to reduce the per capita design flow rate of 90 gpcd. Since flow data was not available to determine the actual per capita flow, it was decided to keep the conservative design rate of 90 gpcd for master planning purposes and reduce the population density for the MR category (the largest residential land use category) instead. With a population density of 3.0 persons/DU for MR category, the total average dry weather daily flow for the City is 0.83 mgd as oppose to 0.88 mgd.

Commercial, Industrial, and Others

Non-residential flows shall also be generated based on an areal method for different land use categories in the City's Design Standards. Commercial, industrial, and other ADWF factors are defined in the City's Design


Standards. These proposed values are also listed in Table 3-1 along with values used in the 1992 Sewer Master Plan. For the most part, except for the Planned Commercial and Heavy Industrial categories, the proposed ADWF factor and those used in the 1992 Sewer System Master Plan are identical to each other.

According to the General Plan, the standards of building intensity for non-residential uses are stated as maximum floor-area ratios (FARs) based on net acreage. A FAR is a ratio of the gross building area zoned for a particular usage category to the net area of the parcel. Per conversation with the City, a FAR of 1.0 shall be applied for all non-residential parcels in calculating the proposed ADWF factor for the purpose of this master plan.

Public/Quasi-Public

Various locations within the City are zoned public/quasi-public (PQP) and are shown in **Figure 3-5**. PQP areas include a variety of areas including schools, parks, City Hall, and detention basins. For this master plan, the applicable sewage generation calculation will be determined on a case by case basis for each PQP area with schools being treated as point sources. **Table 3-2** is a listing of the sewage generation flowrates for each PQP location.

Figure 3-5: Public/Quasi Public Parcels

Note: Not all well locations are shown due to the fact that some wells are located on non P/QP parcels

Table 3-2: ADWF for PQP Parcels

PQP PARCEL	DESCRIPTION	EXISTING ADWF ^a (gpd)	BUILDOUT ADWF ^a (gpd)	EQUIVALENT LAND USE ^b	COMMENT
1	Shirley Rominger Intermediate School	18,000	35,000 ^c	N/A	Existing = 360 students Buildout = 700 students
2	Winters Middle School	23,000	30,000 ^c	N/A	Existing = 460 students Buildout = 575 students
3	Cemetery	7,200	7,200	N/A	Small office facility.
4	Detention Basin	0	0	N/A	
5	Waggoner Elementary School	35,000	35,000 ^d	N/A	Existing = 700 students Buildout = 700 students Assumed connection at Grant Ave.
6	Well ^g	0	0	N/A	
7	John Clayton Kinder School	10,000	25,000 ^d	N/A	Existing = 200 students (10,000 gpd) Buildout = 200 students (10,000 gpd)
8	Winters High School	37,620	45,000 ^e	N/A	Existing = 627 students Buildout = 700 students Assumed connection at Railroad Ave (90% of flow - gym) Grant Ave. (10% of flow - admin.)
9	City Hall / Police Dept	3,500 gpd/net acre	3,500 gpd/net acre	CBD	
10	Yolo County Library	3,500 gpd/net acre	3,500 gpd/net acre	CBD	
11	Fire Department	3,500 gpd/net acre	3,500 gpd/net acre	CBD	
12A	Park/Community Center	3,500 gpd/net acre	3,500 gpd/net acre	CBD	Sewage generation is highly variable and is assumed to be equivalent to CBD parcels
12B	East Street Pump Station / Well ^g	0	0	N/A	
13	Corporation Yard / Well ^g	3,500 gpd/net acre	3,500 gpd/net acre	CBD	Sewage generation is highly variable and is assumed to be equivalent to CBD parcels
14	Winters School District	0	6,000 ^f	N/A	Existing = 0 students Buildout = 100 students

3. Hydraulic Model Development

PQP PARCEL	DESCRIPTION	EXISTING ADWF ^a (gpd)	BUILDOUT ADWF ^a (gpd)	EQUIVALENT LAND USE ^b	COMMENT
15	Future Elementary School	0	35,000 ^d	N/A	Existing = 0 students Buildout = 700 students
16	Future Fire Station	0	3,500 gpd/net acre	CBD	
17	Future High School	0	60,000 ^e	N/A	Existing = 0 students (0 gpd) Buildout = students (60,000 gpd)
18	Landfill (closed) and Future Park	0	900	PR	Parcel is approximately 30 acres. 75% of parcel will be a park, 25% of the parcel will not be developed.
19	Future City Facility	0	30,000	NC OF	The future use of this 30 acre site is unknown. Assume future sewer generation equivalent to NC and OF parcels.
20	Wastewater Treatment Plant	0	0	N/A	

a. Rounded to the nearest 1,000.
 b. For modeling purposes. The equivalent Land Use categories and their codes are shown in Table 1.
 c. From the City's Design Standards, ADWF = 50 gpd/student, but not less than 30,000 gpd at buildout.
 d. From the City's Design Standards, ADWF = 50 gpd/student, but not less than 25,000 gpd at buildout.
 e. From the City's Design Standards, ADWF = 60 gpd/student, but not less than 45,000 gpd at buildout.
 f. From the City's Design Standards, ADWF = 60 gpd/student.
 g. Not all wells are shown due to the fact that some wells are located on non-PQP parcels.

Large Dischargers

Flows from large dischargers, such as major industries and large institutions, are treated as point sources in developing system wastewater flows since they cannot be accurately estimated using the typical areal unit flowrates described above. For this master plan, the Mariani Nut and Fruit Company and El Rio Villa have been identified as the only large dischargers for the City.

The Mariani facility is located to the east of Railroad Avenue from Anderson Avenue to Abbey Street. Based on examination of aerial photography, it appears that the main processing area is located north of Grant Avenue between Dutton Street and Walnut Lane. This three acre parcel is assumed to generate 100 gpm (0.144 mgd) of ADWF. The dry weather peaking factor of 3 will also be applied to the Mariani facility (PDWF = 300 gpm or 0.432 mgd). This ADWF correspond to an areal flowrate of 48,000 gpd/acre. This flowrate assumption can be modified as necessary as the City collects additional flow data from the Mariani facility.

El Rio Villa is a small subdivision located approximately 0.7 miles east and outside of the City's urban limit boundary. The City has a contract with Yolo County to convey and treat the sewage from El Rio Villa and there are no plans to increase the size of this small subdivision. Wastewater from El Rio Villa is collected and pumped to the City's sewer collection system via the El Rio Villa Pump Station (ERVPS).

The ERVPS is a two-stage pump station consisting of two pairs of pumps. Each pair of pumps can pump 155 gpm. It is assumed that one of the pairs of pumps provides stand-by capacity. Flow data from the ERVPS indicated that on an average dry day, the pumps are activated approximately 50 times a day for a minute or two each time. Therefore, even though the pump station only pumps 12,000 gallons on an average dry weather day (equivalent to 8.3 gpm), the sewer system must be capable of conveying a flowrate of 155 gpm.

Further downstream in the sewer system, it may be possible to reduce the impact of this short duration peak flow as the peak is attenuated. For example, the impact of the flow from the ERVPS on the East Street Pump Station is closer to 10 gpm than 155 gpm. This reduction of impact will be evaluated on a case-by-case basis during modeling.

Estimated ADWF Flows

Table 3-3 presents the existing and buildout ADWF generated for the City based on the methodology discussed above. The existing and buildout ADWF generated is approximately 0.83 mgd and 2.81 mgd, respectively⁴. The ADWF value of 0.83 mgd for existing condition is a reasonable assumption and validates the proposed methodology since the average daily flow at the treatment plant is 0.83 mgd⁵. The ADWF projection of 2.81 mgd for the buildout land use scenario is a conservative value assumption for collection system master planning purposes.

⁴ Does not include flows from El Rio Villa.

⁵ Larry Walker Associates, *City of Winters Sewer Master Plan Update – Wastewater Treatment Facilities*, December 2000.

		EXISTING	LAND USE	BUILDOUT	LAND USE
LAND USE CATEGORIES	CODE TOTAL NET ACREAGE		TOTAL ADWF (gpd)	TOTAL NET ACREAGE ^a	TOTAL ADWF (gpd)
Residential					
Rural	RR	0	0	47	14,800
Low Density	LR	89	138,000	299	694,000
Medium Density	MR	196	284,600	314	626,000
Medium/High Density	MHR	16	27,000	69	172,000
High Density	HR	15	41,400	41	183,000
Sub-Total		316	491,000	770	1,689,800
Commercial					
Neighborhood	NC	4	9,800	22	55,100
Central Business District	CBD	46	162,100	63	220,000
Highway Service	HSC	1	2,200	6	13,800
Planned	PC	0	0	24	58,900
Planned/Business Park	PC/BP	0	0	54	136,100
Sub-Total		51	174,100	169	483,900
Industrial					
Light	LI	0	0	65	129,600
Heavy	HI	0	0	37	186,300
Sub-Total		0	0	102	315,900
Other					
Agriculture	AG	0	0	4	0
Office	OF	4	11,200	5	13,200
Public/Quasi-Public	PQP	280	150,300	399	374,000
Parks & Recreation	PR	14	1,900	145	29,000
Open Space	OS	49	0	188	0
Vacant	VC	1068	0	n/a	n/a
Sub-Total		1,415	163,400	741	416,200
	TOTAL	1,782	0.83 mgd	1,782	2.81 mgd

Table 3-3: Land Use Ca	ategories and Existing and	d Buildout ADWF Flows
------------------------	----------------------------	-----------------------

3.3.2.2 Peak Dry Weather Flow (PDWF)

Base wastewater flows vary throughout the day, with peak flow periods typically occurring in the morning and early evening hours. The ratio between these daily peak flowrates and the average flowrates is generally expressed as a peaking factor:

Peak Dry Weather Flow = [Average Dry Weather Flow] x [Peaking Factor] or PDWF = ADWF x PF

Peaking factors are often developed based on dry weather flow monitoring data for steady state hydraulic simulation. The 1992 Sewer System Master Plan stated that peaking factors in the system varied from 2.3 to 4.0, but it is unclear which peaking factor(s) was used. A peaking factor of 3 will be used in this master plan,

since the City does not have any current flow monitoring data. The peaking factor will be applied to all land uses except for Parks & Recreation and El Rio Villa parcels. These parcels will use a peaking factor of 1 since park parcels generally have a very flat diurnal curve and the El Rio Villa PS conveys flows to the collection system at an "instantaneous" flowrate that does not vary between dry weather and wet weather.

In large collection systems, the peak flows are attenuated as the flows move downstream. This is partly due to the difference in travel times of the various sewersheds (i.e. the peaks do not arrive at the same time). However, for the purpose of steady state modeling and since the size of the City's sewer collection system is relatively small, it is both reasonable and conservative to assume that all the peaks will arrive at the same time and to size conveyance and pumping facilities accordingly.

3.3.2.3 Infiltration/Inflow (I/I)

The 1992 Sewer System Master Plan did not reference any I/I rate. The I/I is assumed to be at a constant rate of 600 gpd/net acre. This is consistent with the City of Woodland's Design Standards and based on conversation with City staff, it will be included in the City of Winters' Improvement Standards.

3.4 Wastewater Flow Projections

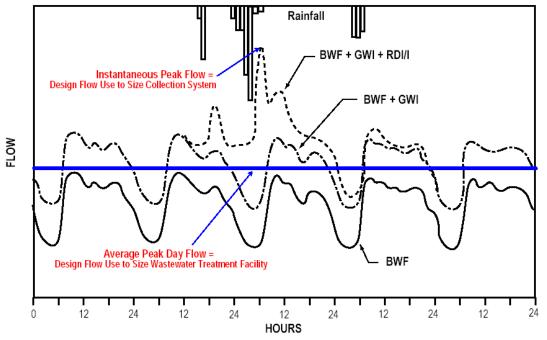

The PWWF was created as an additional attribute in the parcel loading GIS shapefile (Parcel loading to manhole.shp) and calculated by applying the peaking factor to the ADWF and adding the I/I flow. A table listing sewer loads by parcel is presented in Appendix B.

Table 3-4 presents the estimated ADWF and PWWF for the planning area for existing and future conditions.

ESTIMATED FLOW (MGD)	2002	BUILDOUT
Average Dry Weather Flow (ADWF)	0.84	2.81
Peak Wet Weather Flow (PWWF)	2.96	9.67

Table 3-4: Wastewater Flow Projections

The ADWF and PWWF of 2.96 MGD and 9.67 MGD, respectively, for the buildout scenario in this master plan are higher than the average and peak design flow used in the City's Wastewater Treatment Facilities Master Plan (Larry Walker & Associates, 2001) of 1.8 MGD and 6.0 MGD, respectively. It is normal for design flows generated by a collection system master plan to be higher then design flows generated by a wastewater treatment facility master plan for any given city since the design goals for these two master plans are different. A collection system is designed with adequate capacity to convey the peak instantaneous flow in order to avoid overflows and a treatment plant is designed to treat a flow with the peaks attenuated. Figure 3-6 shows a typical sewage flow pattern over a 24-hour period. As shown in **Figure 3-6**, the design flow for a collection system is the instantaneous peak wet weather flow while the design flow for a wastewater treatment facility is the average peak day flow.

Figure 3-6: Design Values Use to Size Collection System vs. WWTF Master Plan

Footnotes:

BWF = base wastewater flow; GWI = groundwater infiltration; RDI/I = rainfall dependent infiltration/inflow.

CHAPTER 4 SEWER COLLECTION DESIGN CRITERIA

Chapter Synopsis: Presents the design criteria recommended for use for the Sewer Collection System Master Plan for the City of Winters. These criteria will serve as the basis for evaluating the hydraulic adequacy of existing facilities and for establishing the alignment and size of future facilities, including gravity trunk sewers, pump stations, and force mains.

4.1 Introduction

This Chapter includes a brief discussion of each of the following items and recommendations for design criteria for the Winters Master Plan.

- Manning's '*n*' factor
- Minimum Pipe Size
- Maximum Allowable Flow Depth
- Minimum Velocity/Slope
- Maximum Velocity
- Maximum Collector Sewer Depth
- Minimum Pipe Depth
- Design Requirements at Increases in Pipe Size
- Headloss in Manholes
- Hydraulic Design Criteria for Force Mains
- Inverted Siphons

4.2 Summary of Recommended Master Plan Design Criteria

A summary of the recommended design criteria is presented in Table 4-1.

Table 4-1: Recommended Master l	Plan Design Criteria
---------------------------------	----------------------

CRITERIA	RECOMMENDED VALUE
Manning's <i>'n'</i>	0.013 for all materials
Minimum Gravity Sewer Pipe Size	8 inches
Maximum Allowable Flow Depth (d/D)	 Under peak design flow conditions: d/D = 0.7 for 8- and 10-inch pipe and 12-inch pipe with service connections d/D = 1.0 for 12-inch (without service connections) and larger pipe.
Minimum Velocity/Slope	 Criteria 1: Minimum design slope selected to provide a minimum velocity of 2 fps for sewers between 8- and 18-inch and a minimum velocity of 3 fps for sewers 39-inch and larger. For sewers between 21- and 36-inch, the minimum slope allows the velocity to transition from 2 fps to 3 fps. Velocities calculated with Manning's 'n' =0.013 and full pipe conditions. See Tables 4-5 and 4-6. Criteria 2: Minimum velocity of 2 fps at peak dry weather flow at buildout.
Maximum Velocity	10 fps

CRITERIA	RECOMMENDED VALUE
Maximum Collector Sewer Depth	8- and 10-inch pipe and 12-inch pipe with service connections have a maximum depth of 16 feet.
Minimum Pipe Depth	 Provide a minimum depth to pipe invert of 7 feet for all gravity sewers including the sewers at the periphery of the system. At least 4 feet of separation between the flow line of creeks and the crown of the sewer at creek crossings.
Increases in Pipe Size	 Match crowns when increasing in pipe size. Set branch sewer elevations 0.1 ft. above the main sewer elevation when the branch sewer is the same size as the main sewer.
Headloss in Manholes	Deflection manholes with deflections greater than 20 degrees are assigned a 0.1-foot drop. Deflections greater than 90 degrees are not allowed.
Force Mains	 Maximum velocity: 8 fps during PWWF at buildout. Minimum velocity: 3.5 fps with one pump running (force mains with 20% slope or less); additional analysis required (force mains with greater than 20% slope) A method to allow dewatering and internal inspection of force mains during summertime flow shall be provided. For short force mains that do not cross railroads, freeways, or rivers, bypass pumping using temporary above ground piping is acceptable. For long force mains, dual force mains shall be provided. Dual force mains would not be required at the initial stage unless low initial flows (and velocities) require dual pipelines to keep grit moving. Pipe friction will be calculated using the Hazen-Williams formula with a roughness coefficient C = 100 for all pipe sizes and materials.
Inverted Siphons	 Avoid inverted siphons whenever possible. Downflow and upflow legs of the siphon have a maximum slope of 15 percent. Upstream invert elevation will be calculated by adding 12 inches plus the pipe friction to the downstream invert elevation. Pipe friction will be calculated using the Hazen-Williams formula with a roughness coefficient C = 100. Minimum velocity of 3 fps at ADWF during early years of operation Minimum velocity of 4 fps at PDWF during early years of operation. Minimum pipe diameter of 8 inches and minimum of two barrels. The downstream manhole must be located in an easily accessed location and safely accessed (busy street locations are not allowed).

4.2.1 MANNING'S 'N' FACTOR

Manning's 'n' roughness coefficient is the friction factor utilized in the Manning's Equation for gravity flow to describe the roughness of a particular pipe material or condition. There has been much debate over the idea that the 'n' value of a pipe can change over time as the pipe ages and a slime layer grows on the pipe wall. One side of the debate claims that the roughness or 'n' value of this slime layer is the same whether the slime layer grows on a concrete wall, a vitrified clay wall, or a plastic wall. The other side of this debate proposes that a different 'n' value should be used for different pipe materials, generally ranging from 0.008 for plastic pipe to 0.016 for unlined concrete pipe (Jeppson, 1976) with vitrified clay pipe between the two values.

Hydraulic laboratory measurements of Manning's 'n' roughness coefficients on new pipe vary little between plastic and concrete pipe. May et al (1986) report values of 0.009 for plastic pipe to 0.010 for unlined concrete pipe. Bloodgood and Bell (1961) found an average Manning's 'n' for asbestos cement pipe of 0.0109. Straub et al (1960) reported values of 0.0106 for tamped concrete pipe and 0.009 for cast concrete pipe.

Table 4-2 shows the Manning's 'n' value used by various agencies. The majority of these agencies specify a Manning's 'n' of 0.013. Some sewerage agencies believe that after a period of time, the deterioration of the pipe surface and joints increase friction, and recommend that a higher 'n' value should be used in design. The City of Los Angeles requires an 'n' value of 0.014 in their design standards for sanitary sewers.

Table 4-2: Comparison of Manning's 'n', Minimum Pipe Size, and Maximum Velocity Criteria of Various Agencies

AGENCY	MANNING'S 'n'	MINIMUM PIPE SIZE (in)	MAXIMUM VELOCITY ^a (fps)
Central Contra Costa Sanitary District	0.013	8	not specified
City of Los Angeles	0.014	8	not specified
Washington Suburban Sanitary Commission	0.013	8	15
City of Dallas	0.013	6	10
City of Phoenix	0.013	8	9
Clark County Sanitation District (NV)	0.013	8	10
City of Bellevue (WA)	not specified	8	10
Sacramento County (CSD-1)	0.013	8	not specified
City of Winters	0.013	8	not specified

^{a.} Most agencies allow the maximum velocity to be exceeded if special design procedures are followed.

A Manning's 'n' design value of 0.013, the most widely accepted value in the industry, provides some degree of conservatism if, in fact, there is a significant benefit to the smoother plastic pipe and PVC-lined (T-lock) pipe walls. For the Winters Sewer Collection System Master Plan, it is recommended that an 'n' value of 0.013 be used for all pipe materials.

4.2.2 MINIMUM PIPE DIAMETER

Although there are some agencies that allow new 6-inch sewers (and many agencies, including Winters, that have substantial amounts of existing 6-inch pipe), a minimum sanitary sewer pipe size of 8-inches is generally accepted as the industry standard and is the current Winters design criteria. Therefore, except for service lines (laterals), the minimum acceptable gravity pipe diameter for all newly constructed pipelines in this Master Plan shall be 8 inches.

4.2.3 MAXIMUM ALLOWABLE FLOW DEPTH

Depending on the pipe size, three different criteria concerning the depth of flow are being used by major sewer agencies in California.

For smaller pipes, usually up to 12 or 15 inch in diameter, the depth of flow to pipe diameter (d/D) ratio of 0.7 or 0.75 is used for the design at peak flow. This lower (d/D) ratio is more conservative and is used to prevent flow blockages in smaller pipes due to debris and avoid potential backup into connected service laterals.

Larger pipes (18 inches and larger) are generally designed to flow full at design flow conditions. A pipe designed for full or 100 percent capacity has a d/D ratio of 1.0. Higher pipe capacities at d/D ratios of 0.8 to 1.0 will not be considered.

In order to save costs, some agencies allow surcharging of large diameter gravity flow sewers under peak flows associated with infrequent (long return period) storm events. The main disadvantage of this approach is that once surcharging is allowed, its extent is hard to control and may result in flooding of basements and other low lying areas, and low flow velocities that may cause solids to settle out in the pipe. Also, gravity sewers are not designed for pressure flows, and flows under surcharged conditions may result in some exfiltration of sewage.

For Winters' Sewer Collection System Master Plan, it is recommended that the maximum depth of flow at peak design conditions in any collector (10-inch diameter or less) shall be 0.7 of the pipe diameter. Sewers 12 inches in diameter and larger may be designed to flow full unless direct service connections are planned, in which case the 0.7 diameter maximum depth shall govern. This criterion is widely accepted and complies with proposed City improvement standards.

4.2.4 MINIMUM VELOCITY/SLOPE

For municipal wastewater with its associated grit and solids content, 2 fps is commonly used as the minimum design velocity at full or half full pipe flow conditions. When the sewers are less than half full, the velocities are below 2 fps. When the depth of sewage is greater than half full, the velocity increases above 2 fps until a maximum velocity is reached at approximately 94 percent of full pipe depth. From 94 percent depth to full pipe, the velocity decreases back to 2 fps.

Table 4-3 lists the full pipe velocity criteria used by various cities and agencies. The criteria were found in the respective standards or design manuals.

AGENCY	MINIMUM VELOCITY (fps)	CONDITION
Central Contra Costa Sanitary District	2 ^a	At half pipe and full pipe conditions.
City of Los Angeles	3 ^b	At peak dry weather flow that exists at the time the pipe is placed into service.
Washington Suburban Sanitary Commission	2.5 ^c	At half pipe and full pipe conditions.
City of Dallas	2	At half pipe and full pipe conditions.
City of Phoenix	2	At half pipe and full pipe conditions.
Clark County Sanitation District (NV)	2 °	At half pipe and full pipe conditions.
Sacramento County	2 to 3 ^d	At half pipe and full pipe conditions.

Table 4-3: Comparison of Minimum Velocity Criteria of Various Agencies

^a Minimum velocity in small sewers (8", 10" and 12") is required to be higher.

^{b.} Minimum velocity in upstream terminal reach is allowed to be lower.

^{c.} Minimum velocity in upstream terminal reach is required to be higher.

^d Minimum velocity is 2 fps for 8 to 18-inch, 3 fps for 39-inch plus, and varies from 2 fps to 3 fps between 21- and 36-inch.

Once a minimum velocity and Manning's 'n' are selected, the pipe slope can be calculated. Table 4 presents the minimum pipe slopes for various agencies for pipe sizes ranging from 8 to 36 inches. County Sanitation District 1 of Sacramento County (CSD-1) has over 2500 miles of mainline sewers and based on observed conditions in their various trunk sewers, they recently steepened their minimum required slopes for sewers greater that 18-inch. CSD-1 now requires that sewers 39-inches and greater have a minimum velocity of 3 feet per second (fps) at full pipe flow and that sewers from 21- to 36-inches in diameter transition from 2 fps to 3 fps. While this change in slope is minor, the decrease in maintenance requirements is noticeable.

Based on historical work order data and blockage reports, CSD-1 has determined that the terminal sewer reaches (sewers in cul-de-sacs for example) require more maintenance than downstream sewers. Although they have not yet modified their standards, they are considering steepening their required minimum slope for terminal sewer reaches. As shown in **Table 4-4**, various leading sanitation agencies currently require steeper terminal reaches. Until this requirement is more common in Northern California, we are not proposing this requirement for Winters.

Pipe Size (in)	Central Contra Costa Sanitary District	City of Los Angeles	Washington Suburban Sanitary Commission	City of Dallas	City of Phoenix	Clark County Sanitation District	Sacramento County (CSD-1)	Winters' Draft Design Standards
8	0.0077	0.0087 0.0044 ^a 0.0060 ^b	0.0050 0.0100 °	0.0033	0.0033	0.0033 0.0060 ^c	0.0035	0.0035
10	0.0057	0.0065	0.0040	0.0025	0.0024	0.0025	0.0025	0.0025
12	0.0022	0.0051	0.0030	0.0020	0.0019	0.0020	0.0020	0.0020
15	0.0015	0.0038	0.0019	0.0015	0.0014	0.0015	0.0015	0.0015
18	0.0012	0.0030	0.0015	0.0011	0.0011	0.0012	0.0012	0.0012
21	0.00095	0.00239	0.00120	0.00090	0.00092	0.00092	0.0012	0.00092
24	0.00080	0.00200	0.00100	0.00080	0.00077	0.00077	0.0011	0.00077
27	0.00070	0.00171	0.00102	0.00060	0.00066	0.00066	0.0010	0.00066
30	0.00060	0.00149	0.00089	0.00055	0.00057	0.00057	0.0010	0.00057
33	0.00055	0.00131	0.00078	0.00050	0.00050	0.00050	0.0010	0.00050
36	0.00050	0.00117	0.00070	0.00045	0.00045	0.00045	0.0010	0.00045

Table 4-4: Minimum Pipe Slopes for Various Agencies ^{d, e}

^{a.} Minimum slope in upper reaches of system with few connections.

^{b.} Minimum slope in upstream terminal reach.

^{c.} Minimum slope in upstream terminal reach.

^{d.} Agencies using 2 fps criteria: Sacramento County, Dallas, Phoenix, Clark County Sanitation District. Agencies using 2.5 fps: Washington Suburban Sanitary Commission Agencies using 3 fps: Los Angeles.

e. Agencies using Manning's 'n' coefficient =0.013: Sacramento County, CCCSD, WSSC, Dallas, Phoenix, CCSD. Agencies using Manning's 'n' coefficient =0.014: Los Angeles.

Recommendations for Minimum Slopes and Velocities

Two criteria are recommended to determine the design minimum slopes for sewers in Winters. The first criteria requires the minimum design slopes (see Table 4-6) to provide a minimum velocity of 2 fps for sewers between 8 and 18 inches in diameter and a minimum velocity of 3 fps for sewers 39 inches and larger. For sewers between 21 and 36 inches, the minimum slope allows the velocity to transition from 2 fps to 3 fps. The velocities are calculated with Manning's 'n' =0.013 and full pipe conditions. The second criterion requires the design slope to provide a minimum velocity of 2 fps at peak dry weather flow at buildout. These criteria will minimize the possibility of inexperienced designers trying to meet depth requirements by oversizing the sewers and flattening the slope.

Recommended Minimum Slopes for Trunk Shed Plans

This Master Plan will recommend sewer trunks and describe the collection system configuration of areas in the City that will be developed in the future. These configurations may consist of sewer alignments that are fairly fixed (i.e. alignments along existing roads) and alignments that are schematic (i.e. alignments through large tracts of currently undeveloped land). Both the 'fixed' alignments and the schematic alignments may be changed during the design process. As a general rule-of-thumb, the length of collector sewer after construction (i.e., following actual subdivision streets) is typically about twice the length of the straight-line distance from the connection point to the trunk sewer to the farthest point in the sewershed. For this reason, it is desirable that a certain amount of flexibility be built into the trunk shed plan configurations. This flexibility can be represented by using slopes that are steeper than the minimum design slopes. **Table 4-6** presents the

recommended minimum trunk shed slopes for 'fixed' (existing road) alignments and schematic (undeveloped land) alignments, compared to the minimum recommended design slopes.

DIAMETER	MINIMUM TRUNK SHED SLOPES			
(in)	ALIGNMENT IN EXISTING ROAD	ALIGNMENT IN UNDEVELOPED LAND		
8 to 10	Increase 0.0002	 8" Sewer: Increase 0.0025 (2.5 feet per 1,000 ft) 10" Sewer: Increase 0.0010 (1 foot per 1,000 ft) 		
12 to 18	(1 foot per mile)	Increase 0.0004 (2 feet per mile)		
21 to 36	Increase 0.0001 (6-inches per mile)	Increase 0.0002 (1 foot per mile)		

Table 4-5: Basis of Minimum	Trunk Shed Slopes	(as Increase over Minin	num Design Slope)
	I am Shea Stopes	(and Design Stope)

Table 4-6: Recommended Minimum Slopes

		MINIMUM TRUNK SHED SLOPES			
DIAMETER (in)	MINIMUM DESIGN SLOPE [♭]	ALIGNMENT IN EXISTING ROAD	ALIGNMENT IN UNDEVELOPED LAND [°]	DESIGN FLOW AT MINIMUM SLOPE (mgd) ^a	
		Collector	Sewers		
8	0.0035	0.0037	0.0060	0.39	
10	0.0025	0.0027	0.0035	0.59	
12	0.0020	0.0022	0.0024	0.86	
Trunk Sewers					
12	0.0020	0.0022	0.0024	1.03	
15	0.0015	0.0017	0.0019	1.62	
18	0.0012	0.0014	0.0016	2.35	
21	0.0011	0.0012	0.0013	3.40	
24	0.0010	0.0011	0.0012	4.63	
27	0.0010	0.0011	0.0012	6.34	
30	0.0010	0.0011	0.0012	8.39	
33	0.0010	0.0011	0.0012	10.8	
36	0.0010	0.0011	0.0012	13.6	

^{a.} Based on minimum design slope, Manning's 'n' =0.013, and full pipe for trunk sewers and d/D = 0.7 for collector sewers.

^{b.} Minimum design slope selected to provide a minimum velocity of 2 fps for sewers between 8 and 18 inches. For sewers between 21 and 36 inches the minimum slope allows the velocity to transition from 2 fps to 3 fps. Velocities calculated with Manning's '*n*' =0.013 and full pipe conditions. Slopes shown with two significant digits.

^{c.} Slopes shown for 8- and 10-inch sewers will be used to check minimum depth of sewer at periphery of trunk shed. Length will be measured on a straight line from trunk sewer to the periphery of the trunk shed. Sewers 12 inches and larger will be shown in the 'best guess' location of future roads in the trunk shed.

4.2.5 MAXIMUM VELOCITY

As shown in Table 4-2, the maximum velocity used by various agencies generally ranges from 8 to 15 fps. For this Master Plan, a maximum velocity of 10 fps for gravity sewers is recommended.

4.2.6 MAXIMUM COLLECTOR SEWER DEPTH

The City's Draft Improvement Standards do not address the maximum depth of sewer services or collector sewers. CSD-1 limits the maximum depth of sewer services to 16 feet which then limits the depth of collector sewers to 16 feet since sewer service lines connect to collector sewers. This restriction exists because the CSD-1 Maintenance and Operations group has the capability to make repairs to service lines and collector sewers to a depth of 16-feet with their own excavation and shoring equipment. Excavations deeper than 16-feet require the M&O group to hire an outside contractor to perform the necessary repairs. Since most sewer repairs occur on service lines and collector sewers, it was logical for CSD-1 to limit collector sewers to a maximum depth of 16-feet. Following similar logic, we recommend that the maximum depth for service sewers and collector sewers in Winters be limited to 16 feet.

For trunk sewers (sewer 15-inch and larger and 12-inch sewers without service sewer connections), we recommend that the maximum depth be evaluated on a case-by-case basis. In general, a maximum cover of 20 feet can be used. Where trunk sewers are deeper than 16 feet and there are service laterals that must be served, it is recommended that shallower collector sewers are constructed parallel to the trunk sewers.

4.2.7 MINIMUM PIPE DEPTH

When discussing the depth of a pipeline, two terms are used: depth and cover. Sometimes these terms are used interchangeably, but for the purposes of this Master Plan, the following definitions will be used:

- Depth: Distance from ground surface to invert of pipe.
- Cover: Distance from ground surface to crown (top) of pipe.

The deeper a gravity sewer is located, the more flexibility there is with respect to alignment and connection point selection for future upstream connections. If a gravity sewer is too shallow, future upstream development using gravity connections may be restricted, and a lift station may be required. For this reason, it is important to plan sewers at proper depths during the master planning process. For this Master Plan, it is recommended that a minimum depth of 7 feet be used for planning future sewers, including the sewers at the periphery of the system. The following procedure will be followed to confirm that this minimum depth criterion is met:

- 1. Delineate trunk shed boundary.
- 2. Using existing features such as roads and property lines, create plan view of sewer system skeleton within the trunk shed.
- 3. Calculate design flows.
- 4. Using design flows, calculate pipe sizes and slopes.
- 5. Connect far corners of trunk shed to trunk sewer skeleton using a straight line at the trunk shed minimum slopes (this represents a collector sewer serving the future development at the periphery of the trunk shed.) Check minimum depth at far corners as well as at all other locations in the trunk shed.

Due to topographic features such as canals, creeks, etc., there may be locations where the minimum depth criteria cannot be met. This will be considered acceptable as long the following two conditions are satisfied:

- 1. The length of the reach of pipe at less than minimum depth is relatively short (less than about 50 feet).
- 2. There is at least 4 feet of separation between the flow line of the creek or canal and the crown of the sewer. The flow line elevations will be based on either field survey data or flow line information from the recent Winters Drainage Master Plans. USGS topographic maps are not accurate enough to determine flow line elevations of canals/creeks for this purpose.

During the final design phase, details such as concrete encasement, pipe material, flotation caps, creek restoration details, hydroseed mixes, manhole setback distances, and trench plugs will be determined based on Winters' Design Standards and the depth of sewer, diameter of sewer, length of crossing, and permit requirements.

4.2.8 DESIGN REQUIREMENTS AT INCREASES IN PIPE SIZE

As design wastewater flowrates increase from upstream to downstream, it is necessary to increase the size of the sewer pipe. Pipe size increases are only allowed at manholes. There are several methods that may be used to determine the relative vertical alignment of the upstream and downstream pipes at changes in pipe size:

- 1. Match the elevation of the energy grade lines of the two pipes at the design flowrate.
- 2. Match the crown elevations.
- 3. Match the 2/3 diameter points.
- 4. Match the 0.7 diameter points.
- 5. Match the 5/6 diameter points.

Method 1 is the most rigorous and is usually only used during final design. Methods 3, 4, and 5 are quick approximations of Method 1. Method 2 is the most conservative and easiest to apply at the planning stage. Therefore for this Master Plan, method 2, matching crown elevations at pipe size increases, is recommended.

There may be locations in the collection system where two pipes of the same size connect together but the design flow in the branch pipe is significantly lower than that in the mainline pipe. At these locations, if the crown elevations are matched, the higher flow level in the main sewer will cause a backwater condition in the branch sewer. For this Master Plan, it is recommended that the branch sewer elevation be set 0.1 foot above the main sewer elevation when the branch sewer is the same size as the main sewer.

4.2.9 HEADLOSS IN MANHOLES

There are various approaches used to account for the headloss generated by manholes:

- 1. Every manhole (straight or deflection) is assigned a 0.1-foot drop.
- 2. Deflection manholes are assigned a minimum of 0.1-foot drop.
- 3. Calculation is made for each headloss component, including headloss due to change of direction, change of slope, and sidewall friction within the manhole, for pipelines with velocities greater than 3 fps.

Method 1 can be excessive except in areas with an abundance of available fall. Method 3 is too rigorous for a planning level analysis. For this Master Plan, Method 2 is recommended with these added clarifications: Deflection manholes with changes in direction greater than 20 degrees will be assigned a 0.1-foot drop. Deflections greater than 90 degrees are not allowed.

If a sewer increases in diameter in a deflection manhole, the invert elevation increases are not additive. For example, if two 12-inch sewers join in a manhole and discharge to an 18-inch sewer, the drop in invert elevation would be 0.5 feet (based on matching crowns), not 0.6 feet (0.5 feet + 0.1 feet for deflection).

4.2.10 HYDRAULIC DESIGN CRITERIA FOR FORCE MAINS

Pump stations and force mains should be avoided in sewage collection systems as much as possible but may become necessary to keep the collection system from becoming excessively deep. The hydraulic criteria for selecting the diameter of force mains are presented below.

Various agencies use different design criteria for minimum and maximum velocities in force mains. Sacramento County is currently writing a Pump Station Design Manual. **Table 4-7** presents the criteria from various agencies.

AGENCY	FORCE MAIN VELOCITY		
Washington Suburban Sanitation District	 Maximum: 6 fps Minimum: 2 fps to keep solids in suspension, 3 to 3.5 fps to resuspend solids 		
City of Dallas	3 to 5 fps		
City of Phoenix	3.5 to 6 fps		

The maximum velocity in a force main is usually determined by balancing a number of factors including cost of the pipeline; cost of power usage (higher velocity results in higher headloss); and cost of pumps, motors, electrical equipment, and surge protection facilities. Given that the design flow rate for sewer force mains (PWWF at buildout) occurs infrequently, once every 10 years if the design storm is a 10-year storm, it is cost effective to set the maximum velocity at a high velocity since the daily peak flow rate is typically much lower. (For a typical water pump station, the daily flow rate is closer to the design flow rate, which tends to lower the cost effective maximum velocity for water transmission pipelines compared to sewage force mains.) For this Master Plan, a maximum force main velocity of 8 fps at PWWF is recommended.

Force mains connected to large pump stations (e.g., East Street Pump Station) flow constantly, whereas small pump stations, such as El Rio Villa pump station, pump intermittently, and the solids in the force mains can settle out during low flow periods as the wet well fills. This is especially true during the early startup years of a pump station before its upstream catchment area fully develops. To resuspend the solids that may settle out in the force main, a minimum velocity of 3.5 fps with one pump running is recommended for use in the Master Plan.

Most force mains are relatively flat and the 3.5 fps recommendation is applicable. A small number of pump stations pump uphill through force mains that are constructed on steep slopes. This adverse slope requires a higher sewage velocity to transport solids. Therefore, if a force main is steeper than 20 percent, additional analysis is required to determine the acceptable minimum velocity.

Dual Force Mains

To obtain the required velocities for both initial and ultimate design flow conditions, dual force mains may be needed. Dual force mains also have the ability to allow for future inspection and rehabilitation of the pipes, which generally cannot be adequately inspected or repaired without being taken off line and dewatered for up to 24 hours at a time

In most cases, dual force mains can be built in two stages, since initial flows are generally significantly lower than design flows at buildout. However, building dual force mains in two stages may not be prudent in locations where available space may not be available in the future or in locations where one-time construction is strongly preferred to minimize impacts to the environment (e.g., wetlands), costly mobilization (e.g., highway and river crossings), or disturbance to the public.

For this Master Plan, it will be assumed that all pump stations will have dual force mains of the same size. Each force main will be sized to carry half of the peak design flow at a maximum velocity of 8 fps.

Also, each force main must have sufficient capacity to carry the peak dry weather flow at buildout so that one force main can be dewatered and undergo inspection or rehabilitation. Since force main inspections and

rehabilitation events are relatively rare, the maximum velocity criteria can be relaxed and increased to 10 fps for peak dry weather flows through a single pipe.

Headloss

The Hazen-Williams formula will be used for calculating the friction headloss of force mains. The Hazen-Williams roughness coefficient, C, varies with pipe material, velocity, size, and age. Sacramento County field studies have measured C factors ranging from 105 (Arden Pump Station 60-inch RCP force main) to 130 (Sailor Bar Pump Station 14-inch PVC force main). For this Master Plan, a roughness coefficient of C = 100 is proposed to be used for all pipe sizes and materials.

4.2.11 INVERTED SIPHONS

The term siphon as used in wastewater practice refers to an inverted siphon or depressed sewer which dips below the hydraulic grade line to avoid obstructions and stands full of sewage even with no flow. Its purpose is to carry sewage under an obstruction and to regain as much elevation as possible after passing the obstruction. Inverted siphons should be avoided unless clearly necessary to cross under major obstructions such as rivers or large creeks, major utility pipelines, highways, etc., and other alternatives are significantly more expensive. Alternatives to inverted siphons include deeper gravity sewers and/or pump stations, a well as "D"-shaped or box sewers. There are currently no inverted siphons in the City of Winters' sewer system, and it is generally the City's preference to construct deeper sewers and/or pump stations to clear deep obstructions.

The approach used in this Master Plan when planning relief projects or future expansion projects will be to avoid inverted siphons whenever possible. If it becomes necessary to use an inverted siphon, the following approach will be used:

- The length of the downflow and upflow legs of the siphon will based on a maximum slope of 15 percent to allow floatables to be conveyed downward and solids to be conveyed upward. [source: City of Los Angeles Sewer Design Manual Figure F272]
- The upstream invert elevation will be calculated by adding 12 inches plus the pipe friction to the downstream invert elevation. (The 12-inch factor is a conservative factor used at the planning phase; during the design phase, detailed hydraulic calculations would be performed.)
- The pipe friction will be calculated using the Hazen-Williams formula with a 'C' coefficient of 100.
- The pipe barrel diameter will be determined based on the following three criteria [source: City of Los Angeles Sewer Design Manual]:
 - Minimum velocity of 3 fps at ADWF during early years of operation.
 - Minimum velocity of 4 fps at PDWF during early years of operation.
 - Minimum 8-inch pipe diameter.
- Two barrels will be assumed for each siphon.

CHAPTER 5 SEWER SYSTEM ANALYSIS & RECOMMENDATIONS

Chapter Synopsis: This chapter presents the results of the sewer system analysis that identifies wet weather conveyance and pumping capacity deficiencies. Improvements to the sanitary sewer system are identified based on the capacity deficiencies. The descriptions of the individual projects and the rationale for identifying improvements are also discussed. There are three types of sewer projects: existing sewer conveyance capacity improvements, pump station and force main improvements, and future expansion of the existing system. One existing sewer conveyance capacity improvement project, eight pump station and force main expansion projects, and eleven future sewer expansion projects were identified.

5.1 Existing Wet Weather Conveyance Needs

This section presents the criteria used to determine conveyance and pumping capacity deficiencies, and identifies the potential conveyance and pumping deficiencies under existing and buildout flow conditions.

5.1.1 CAPACITY DEFICIENCY CRITERIA

Table 5-1 summarizes the criteria that were used to evaluate the model results to determine conveyance and pumping capacity deficiencies. Note that evaluation criteria for master planning are not the same as design criteria and cannot be interchanged.

Table 5-1: Capacity Deficiency Criteria

	CAPACITY DEFICIENCY CRITERIA
Conveyance	 A pipe is considered deficient if either or both of the following conditions are met at peak hour with design flows: ^a There is potential for manhole overflow ^b The ratio of the modeled design flow to the calculated pipe hydraulic capacity ^c exceeds 1.2 and there is more than 4 feet of surcharging ^d
Pumping	A pump station is considered deficient if its firm capacity ^e is less than calculated design flows ^a

^{a.} Peak flows established in Chapter 3.

^{b.} It is assumed that there is potential for manhole overflow if the hydraulic gradeline is less than 3 ft. below the ground surface. This definition accounts for potential error in rim elevation data and model accuracy. This criterion is of primary importance: a manhole overflow could represent public health risk, carries significant fines imposed by the Regional Water Quality Control Board, and could result in increased regulatory scrutiny through the State's pending statewide WDR regulations involving additional overflow reporting.

^{c.} The hydraulic capacity is calculated based on the physical characteristics of the pipe and does not account for reduced capacity due to root intrusion, excessive grease accumulation, or debris. The City is responsible to ensure that 100% of the pipe capacity is available for wastewater flow.

^{d.} Criterion allows existing system to operate under surcharge conditions for short period of time during peak wet weather flow.

^{e.} Firm capacity is the capacity of the pump station with the largest pump not operating.

5.1.2 CONVEYANCE CAPACITY DEFICIENCIES & RECOMMENDATIONS

The H_2OMap Sewer hydraulic model of the existing collection system was run under the existing and buildout flow conditions defined in Chapters 2 and 3. A proposed citywide layout of future sewers and pump stations was then added to the City's existing collection system for analysis of future land use scenarios based on inputs from the City, the Draft Drainage Master Plans, and the proposed Winters Highlands and Callahan Estates developments. Load allocations for the future sewer collection system were presented in Figure 3-3. Potential wet weather conveyance capacity deficiencies were then identified based on criteria established in Table 5-1. **Figure 5-1** presents a layout of future sewers, pump stations, and locations of identified potential wet weather conveyance capacity deficiencies for the *quasi-existing*⁶ sewer collection system under buildout PWWF conditions. Following discussion of the quasi-existing system, a similar figure, **Figure 5-12**, is presented for the recommended future collection system. For both systems, identified deficiencies are grouped together into locations and are either numbered (if a project is recommended) or lettered (if a project is *not* recommended).

Under both quasi-existing and recommended future conditions, there are eight locations where pipelines or manholes showed a potential deficiency. The capacity deficiencies, pipe characteristics, and hydraulic profiles for both recommended and non-recommended projects are presented in the sections below. In general, replacement pipes were preferred over parallel pipes in recommending projects for the existing sewer collection system because:

- 1. The difference in the parallel and replacement pipe was generally only one or two diameters;
- 2. Long-term maintenance is more efficient with fewer pipes and manholes in the system; and
- 3. Underground utility congestion is minimized with fewer pipes.

⁶ The term "quasi-existing," as it is used in this and in subsequent sections, refers to a skeletonized sewer network that features the City's existing configuration, plus recommended expansion sewers and pumping stations intended to serve those portions of the study area that are currently undeveloped (North of Moody Slough Road, for example). The quasi-existing system does *not* include relief sewers or other capacity improvement projects that would address the potential deficiencies under buildout PWWF conditions. Analysis of the quasi-existing system is intended to highlight the need for certain capacity improvements and to compare results before and after the implementation of capacity improvement projects.

Figure 5-1: Potential Wet Weather Conveyance Capacity Deficiencies Location

5.1.2.1 Capacity Deficiencies under Quasi-Existing Conditions

The deficiencies and pipe characteristics for eight locations under quasi-existing conditions are summarized in Table 5-2 below.

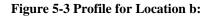
PIPE ID ^b	STREET	DIAMETER (in)	LENGTH (ft)	DEPTH (ft)	CAPACITY DEFICIENCIES (q/Q) c
	LOCAT	ION a			
SP-1132	First Street at Russell Street	6	155	9	1.342
	LOCAT	ION b			
SP-1080	Edwards Street west of Railroad Avenue	6	465	10	1.279
SP-1078	Edwards Street west of First Street	6	470	7	1.205
	LOCAT	ION c			
SP-1178	East Street northwest of East Abbey St.	18	315	13	1.232
SP-1180	East Street northwest of East Edward St.	18	310	12	1.445
	LOCATIO	ON 2-4			
From SP-2204 to SP-2292	Neimann St. west of Hemenway St. to Railroad Ave. north of Grant Ave.	6 to 8	3,660	varies	varies; up to 1.7
	LOCAT	ION e			
SP-2174	Anderson Ave. west of Hill Pl.	8	265	6	0.259
SP-2172	Anderson Ave. west of Apricot Ave.	6	280	5	0.899
	LOCAT	ION f			
SP-1290	Grant Avenue northeast of Main Street	10	330	8	
	LOCAT	ION g	-	-	
SP-1286	East Main Street east of East Street	10	260	17	1.435
SP-1284	East Main Street east of East Street	10	240	17	1.396
SP-1282	East Main Street east of Lauren Court	10	125	15	1.377
SP-1280	East Main Street east of Caselli Court	10	340	14	1.349
	LOCAT	ION h			
SP-2104	Taylor Street at Grant Ave.	8	135	9	1.257
	LOCAT	ION i			
SP-2106	Main Street north of Ivy Loop	8	410	17	1.221

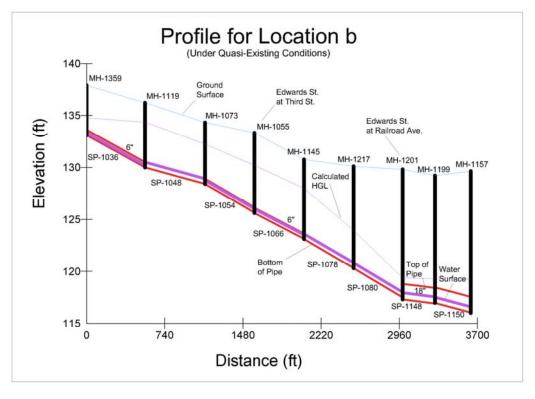
Table 5-2: Capacity Deficiencies	and Pipe Characteristics unde	er Ouasi-Existing Conditions ^a
···· · · · · · · · · · · · · · · · · ·	· · · I · · · · · · · · · · · · · · ·	

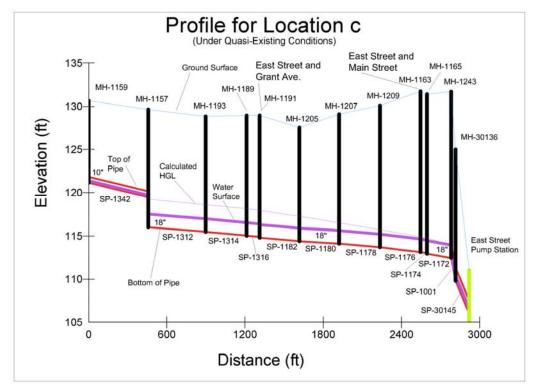

Quasi-existing refers to a skeletonized sewer network featuring the City's existing configuration, plus recommended expansion sewers and pumping stations intended to serve those portions of the study area that are currently undeveloped. The quasi-existing system does not include relief sewers or other capacity improvement projects that would address the potential deficiencies under buildout PWWF conditions.

b. Refers to H₂OMap Sewer numbering system.

c. Expressed as ratio of the modeled design flow to the calculated pipe hydraulic capacity.


Each of the locations listed in Table 5-2 is described in further detail below.


Location a – The sewer of interest for this location consists of one 6-inch sewer segment on First Street (SP-1132) that is approximately 134% over capacity. This deficiency could be resolved by upsizing this 155 foot segment to an 8-inch sewer to match the downstream sewers. However, this pipe is relatively deep (at 9 feet) with a low risk of causing an overflow and the surcharging is localized. Additionally, construction of a recommended capacity improvement project (Project 20) will partially alleviate this deficiency. Therefore, it is recommended that the City does not pursue this project.


Figure 5-2: Profile for Location a

Location b – This location consists of two 6-inch sewers (SP-1078 and SP-1080) along Edwards Street at approximately 120% and 128% of capacity, respectively. As shown in **Figure 5-3**, localized surcharging to within 3 feet of ground level is possible at several of the manholes at this location, even with flows from the undeveloped Creekside Estates development routed to the 10-inch sewer on Grant Avenue. These potential deficiencies could be resolved by upsizing the Edwards Street sewers to 8-inches, or by freeing up additional capacity in the sewers downstream in Railroad Avenue. See Section 5.1.2.3 for additional discussion.

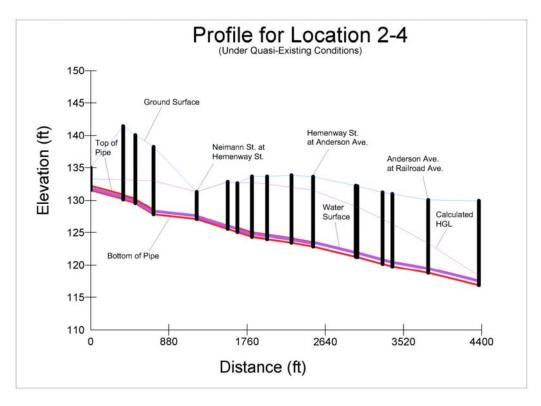
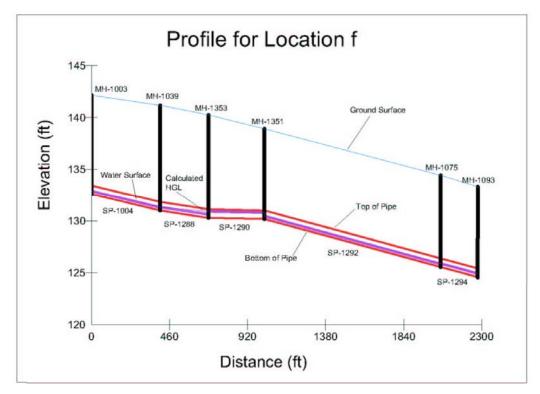

Location c – Approximately 1,100 feet of 18-inch sewer is undersized on East Street, between Morgan Street and Grant Avenue, with two segments (SP-1180 and SP-1178) having a q/Q greater than 1.2. This sewer currently conveys flows, including the 155 gpm flows from El Rio Villa, to the East Street Pump Station. These deficiencies can be partially resolved by diverting El Rio Villa flows north to Future Pump Station C, as shown in **Figure 5-4**.

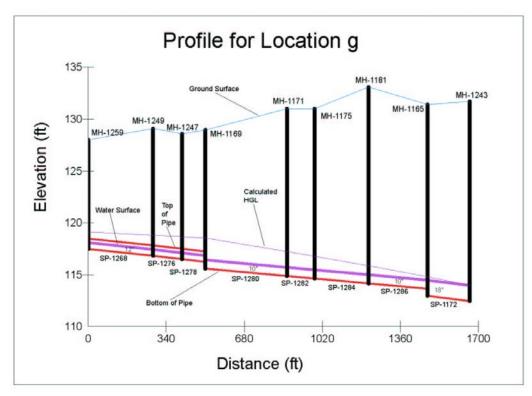
Figure 5-4: Profile for Location c

Location 2-4 – The segment that comprises Location 2-4 (from MH-2178 to MH-2120) consists of a series of 6- and 8-inch sewers spanning Neimann Street, Hemenway Street, Anderson Avenue, and Railroad Avenue. A number of these sewers are undersized, resulting in surcharging and backwater effects that affect the entire segment. These deficiencies could be resolved by either upsizing existing sewers in Neimann, Hemenway, Anderson and Railroad, or by rerouting flows from Hemenway at Neimann to an expansion project along Neimann, Railroad and Dutton (Project 4 on Figure 5-28). Refer to Section 5.1.2.2 for a description of the recommended projects. See Profile P3 (Section 5.1.2.5) for this same sewer after the recommended projects are constructed.

Figure 5-5: Profile for Location 2-4



Location e – Due to backwater effects from Location 2-4, surcharging is possible in the manholes identified in Location e. Although the pipes in Location e have adequate capacity to convey flows from this segment, the calculated HGL for the segment exceeds the 3-foot criteria. This problem will be resolved by the construction Projects 1 through 4 (see Section 5.1.2.2).


Figure 5-6: Profile for Location e

Location f – As shown in Figure 5-7, pipe SP-1290 is a flat 10-inch sewer on Grant Avenue. The slope for this sewer could not be verified through existing records and survey data. Hence, it is recommended that the City investigate/survey sewer slopes for this area and perform further analysis before pursuing any corrective project.

Figure 5-7: Profile for Location f

Location g – The deficiency for Location g consists of four 10-inch sewers on East Main Street immediately east of East Street to Morgan Street. These undersized sewers cause a bottleneck that reaches the corner of East Main Street and Morgan Street. However, due to only minor surcharging (i.e., one to two feet) in these sewers, and the fact that these sewers are at least 10 feet deep, the chance of an overflow is minimal. Hence, no project is recommended for Location g.

Figure 5-8: Profile for Location g

Location h – This location consists of one 8-inch sewer (SP-2104) at approximately 126% of capacity. This deficiency is resolved by the construction of Project 5, which diverts flow north at Adams Lane and Taylor Street.

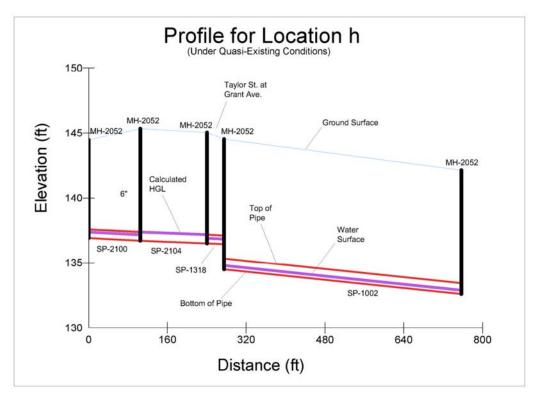


Figure 5-9: Profile for Location h

5.1.2.2 Recommended Capacity Improvement Projects

Based on the analysis of the quasi-existing system, several capacity improvement projects are recommended to address the capacity deficiencies identified in the previous section. The following section discusses the logic behind these capacity improvement projects.

Projects 1-4

The construction of a diversion sewer to reroute flows from the Hemenway Street sewer (Projects 1 through 4 in Figure 5-28) will eliminate the capacity deficiencies previously described for the sewers along Neimann Street, Hemenway Street, Anderson Avenue, and Railroad Avenue. New sewers will divert flows at Neimann and Hemenway and will serve the parcels along Neimann, Railroad, and a portion of Dutton Street (Project 3 in Figure 5-28). For this solution to work, existing sewers in Dutton must be reconstructed at a different slope and with a larger diameter (Project 1 in Figure 5-28). A deep local collector sewer will serve the undeveloped parcels on the north side of Neimann Street (Project 4 in Figure 5-28), and a new lift station (Project 2 in Figure 5-28) will lift flows in the deep sewer into the new sewers of Project 3.

Figure 5-5 and 5-15 depict the sewers along Railroad Avenue, Anderson Avenue, Hemenway Street, and Neimann Street before and after the recommended projects are constructed.

The pipe profile shown in **Figure 5-10** demonstrates the necessity of Project 1, as it presents the future flow conditions if the existing sewers in Dutton Street are not reconstructed.

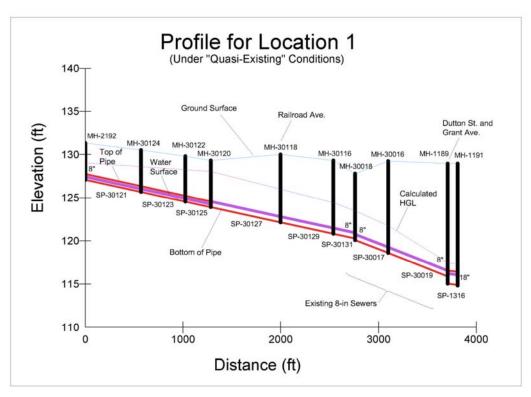


Figure 5-11 shows conditions after the reconstruction of the existing sewers in Dutton Street.

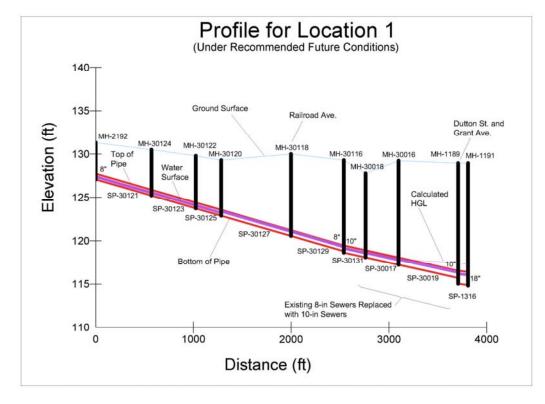


Figure 5-11: Profile for Location 1 (Recommended Future Conditions)

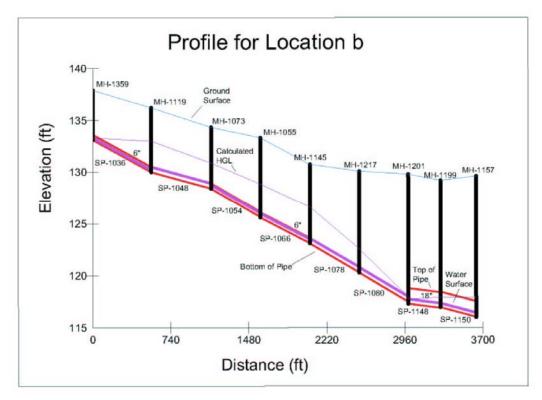
Project 5

By constructing Project 5, which consists of a new sewer from Adams Lane at Taylor Street to Main Street at Ivy Loop, flows from portions of the presidential streets area will be diverted north to Future Pump Station A. This flow diversion will alleviate or eliminate several of the capacity deficiencies discussed in Section 5.1.2.1 (Locations b, c, h and f), and will reduce the total flow entering the East Street Pump Station.

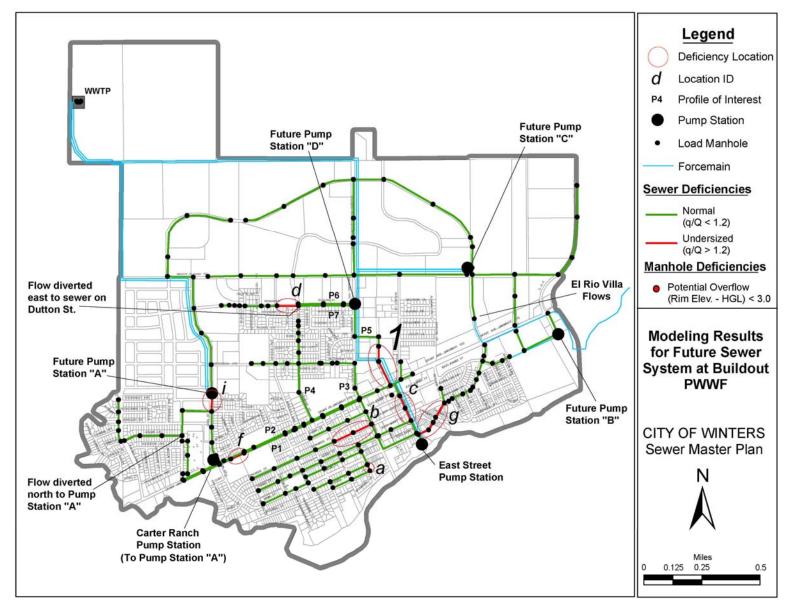
El Rio Villa Flow Reroute

By rerouting the 155 gpm flows from El Rio Villa, the total flow entering the East Street Pump Station will be further reduced. Additionally, several capacity deficiencies outlined in Section 5.1.2.1 (Locations b and c) will be alleviated by this reroute.

Project 20

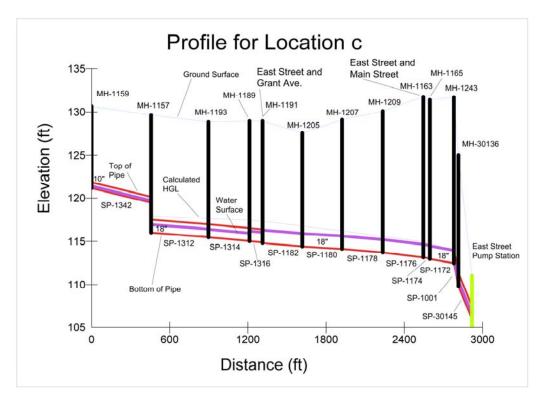

In conjunction with Project 5 and the reroute of El Rio Villa Flows, Project 20 helps reduce the impact of several capacity deficiencies outlined in Section 5.1.2.1 (Locations b and c) by providing a shorter travel distance for much of the flow south of Abbey Street.

5.1.2.3 Modeling Results for Recommended Future System


Figure 5-12 presents the modeling results for the recommended future collection system during buildout peak wet weather conditions. The system shown in Figure 5-12 includes the capacity improvement projects described in the previous section. Results, including notable remaining capacity deficiencies, are discussed in further detail below.

Location 1 (Project 1) – This location consists of two 8-inch sewers (SP-30017 and SP-30019) on Dutton Street north of Grant Avenue. Under buildout conditions, these sewers receive flow from a series of proposed expansion pipes to the north and west. In their current configurations, these pipes are at approximately 143% and 168% of their capacities, respectively. The resulting surcharging, shown previously in Figure 5-10, is considered unacceptable. As discussed in Section 5.1.2.2, it is recommended that the City replace this 1,170 foot stretch of pipe with 10-inch pipes at a slope of 0.0025 (See Figures 5-10 and 5-11). These two segments are connected to a larger project that begins upstream at Neimann Street and Hemenway Street (see Project 2 on Figure 5-28).

Location b – With the construction of Project 20, both the extent and the severity of the capacity deficiencies described previously for this location are reduced. Two 6-inch sewers (SP-1078 and SP-1080) along Edwards Street are still undersized, however, and flow at approximately 125% of capacity. As shown in **Figure 5-13**, localized surcharging to within approximately 4 feet of ground level is possible, even with flows from the undeveloped Creekside Estates development routed to the 10-inch sewer on Grant Avenue. However, because the Creekside Estates parcels will not deliver additional flows to the Edwards Street sewer (see Section 5.1.2.4 below), and because surcharging does not exceed the 3-foot criteria, it is recommended that the City does not pursue this project at this time, but instead perform flow monitoring to confirm the flows in this area.


Figure 5-13: Profile for Location b

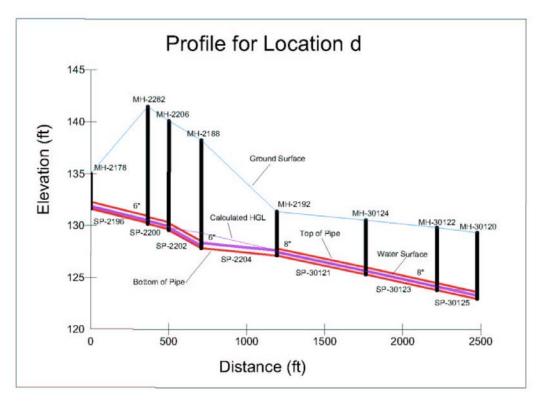

Location c – Even with El Rio Villa flows diverted north, Location c still shows a potential deficiency under the buildout PWWF scenario. The profile (**Figure 5-14**) for the 18-inch sewers at this location shows that they are relatively deep (at 12 feet) with a low risk of causing an overflow, since the calculated HGL is approximately 11 feet below the ground surface. In addition, surcharging is localized. Therefore, it is recommended that the City does not pursue any project for this location.

Figure 5-14: Profile for Location c

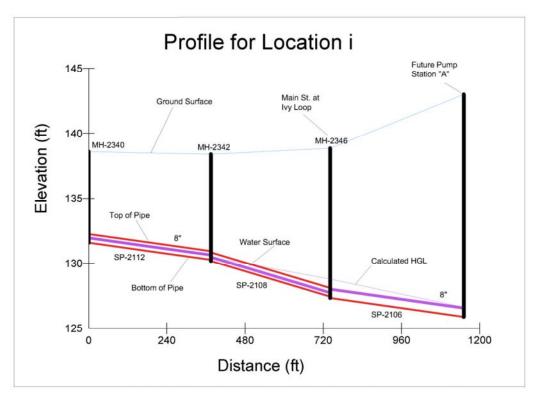

Location d – Although the extent and severity of capacity deficiencies at this location are reduced dramatically by the construction of Projects 1-4, there is still one 6-inch sewer (SP-2204) on Neimann Street at approximately 153% of capacity. Although this deficiency could be resolved by upsizing the 485 foot segment to 8-inches, possible surcharging at this location is minimal (approximately 9 feet below ground level) and does not appear to be an issue. No projects are recommended for this location.

Figure 5-15: Profile for Location d

Location i – This location consists of one 8-inch sewer (SP-2106) flowing north on Main Street. This pipe flows at approximately 122% of capacity, and occurs only after the construction of Project 5. Flows in this sewer drain directly into Future Pump Station A, at the southwest corner of the proposed Callahan Estates development. This deficiency could be resolved by upsizing the 410 foot segment to a 10-inch sewer, but since surcharging at this location is both localized and minimal (approximately 10 feet below ground level), no project has been recommended for this location.

Figure 5-16: Profile for Location i

Based on the results presented in this section, Project 1 has been recommended to address the deficiencies of the existing sewers at Location 1. The deficiencies and pipe characteristics for Location 1 are summarized in Table 5-3 below.

Table 5-3: Recommended Proje	cts for Existing Sewers:	Canacity Deficiencies and I	ine Characteristics
Table 5-5. Recommended 110je	cio for Emisting Deners.	Capacity Deficiencies and I	ipe Characteristics

PIPE ID ^a	STREET	EXISTING DIAMETER (in)	LENGTH (ft)	CAPACITY DEFICIENCIES (q/Q) ^b	RECOMMENDED RELIEF DIAMETER (in)
Project 1 – Dutton Street Sewer Upsize					
SP-30017	Dutton St. north of Grant Ave.	8	610	1.432	10
SP-30019	North of SP-30019	8	340	1.678	10

^{a.} Refers to H₂OMap Sewer numbering system.

^{b.} Expressed as ratio of the modeled design flow to the calculated pipe hydraulic capacity.

5.1.2.4 Additional Capacity Evaluations and Recommendations

Creekside Estates Analysis – Based on hydraulic modeling analyses for several loading configurations for the undeveloped Creekside Estates development, it has been determined that it is both feasible and realistic to convey flows from the proposed development to the existing 10-inch sewers on Grant Avenue, rather than to the existing 6-inch sewers on Edwards Street. After diverting flows at Adams Lane and Taylor Street to Future Pump Station A, sufficient capacity will be created in the 10-inch sewer in Grant Avenue to accommodate future Creekside flows in that sewer.

Manhole Reconfiguration for Southwest Area Sewers Project (Project 5) – Existing sewer SP-2088, a 120 foot 8-inch pipe that currently links the 8-inch sewer on Adams Lane to the 8-inch sewer serving the trailer park on Grant Avenue, will no longer be used to convey flows for portions of the presidential streets area to the sewers on Grant Avenue, as flows from these parcels will be routed north in the future towards Future Pump Station A. In order to ensure that flows from this area travel north as intended on Taylor Street, it is recommended that MH-2094 be reconfigured (or that a new manhole is constructed just upstream). The future configuration of MH-2094 should resemble a broadcrested weir, which will prohibit daily flows from upstream areas from flowing south on Taylor, yet allow surcharged flows due to downstream blockage or mechanical malfunction to overflow and passively overtop the weir and flow south towards Grant Avenue. The overflow should be constructed one foot above the existing invert. The new manhole or reconfigured manhole must allow a CCTV camera to be inserted. This will probably require a 72-inch diameter manhole to be used.

Manhole Reconfiguration for Neimann/Railroad/Dutton Sewers Project (Project 3) – Similar to the manhole reconfiguration for the Southwest Area Sewers Project, existing sewer SP-2206, a 350 foot segment of 6-inch pipe on Hemenway Street that currently conveys flows from Neimann Street towards Anderson Avenue, will no longer be used to convey average flows in the buildout scenario since 100 percent of the flows will be diverted east on Neimann Street. In order to ensure that flows from the Neimann Street sewers travel east as intended towards Railroad Street, it is recommended that MH-2192 be reconfigured (or a new manhole to be constructed just downstream). The future configuration of MH-2192 should resemble a weir, which will prohibit daily flows from the aforementioned sewers from flowing south on Hemenway, yet allow surcharged flows due to downstream blockage to passively overtop the weir and flow south towards Anderson Avenue. The overflow should be constructed one foot above the existing invert. The new manhole or reconfigured manhole must allow a CCTV camera to be inserted. This will probably require a 72-inch diameter manhole to be used. A profile of the Hemenway/Anderson/Railroad sewers is presented in Figure 5-12. This profile shows that with flows diverted from this sewer at Hemenway Street and Neimann Avenue, there is only minor surcharging.

5.1.2.5 Profiles of Interest

This subsection presents the various "profiles of interest" listed below, and shown in **Figures 5-17** through 5-23:

- *P1:* Grant Avenue 10-inch Sewer (Taylor Street to East Street)
- *P2:* Grant Avenue 8-inch Sewer (Taylor Street to East Street)
- *P3:* Hemenway/Anderson/Railroad Sewer
- *P4:* Hemenway Street from Neimann Street to Grant Avenue
- *P5:* Neimann/Railroad/Dutton Sewer
- *P6:* Neimann Street Deep Sewer
- *P7:* Neimann Street Shallow Sewer

Figure 5-17: Profile for P1

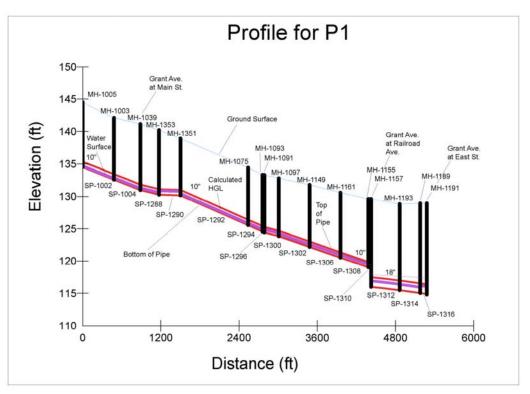
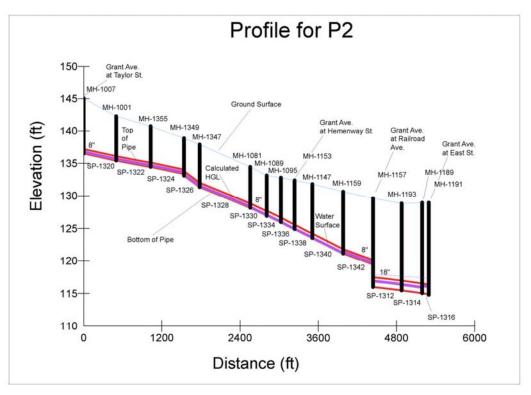



Figure 5-18: Profile for P2

Figure 5-19: Profile for P3

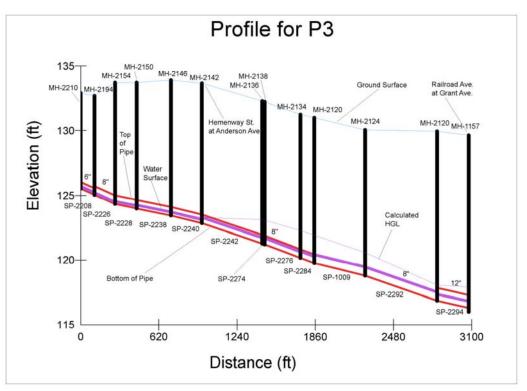
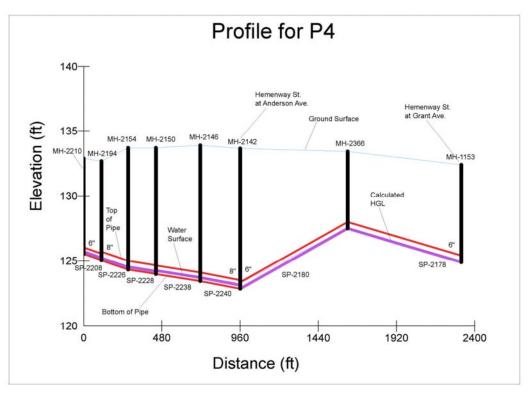



Figure 5-20: Profile for P4

Figure 5-21: Profile for P5

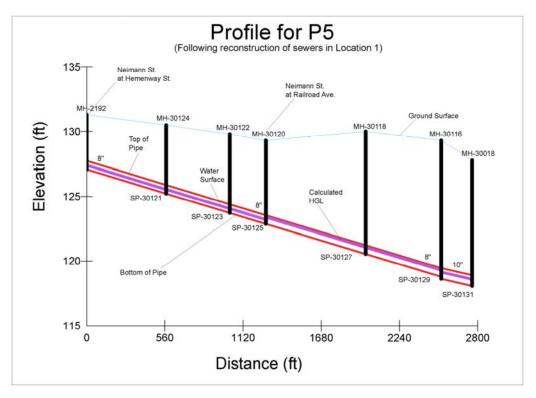
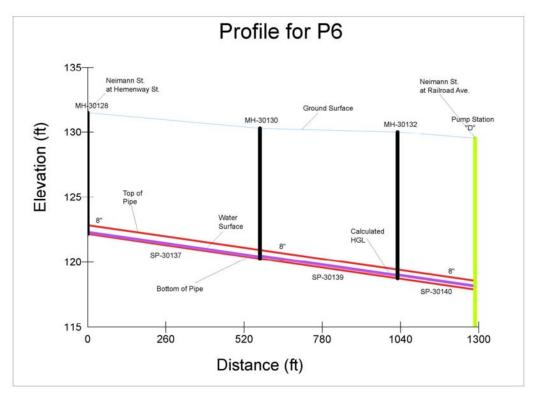
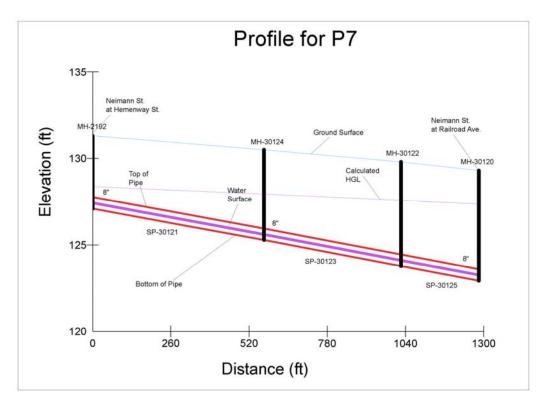




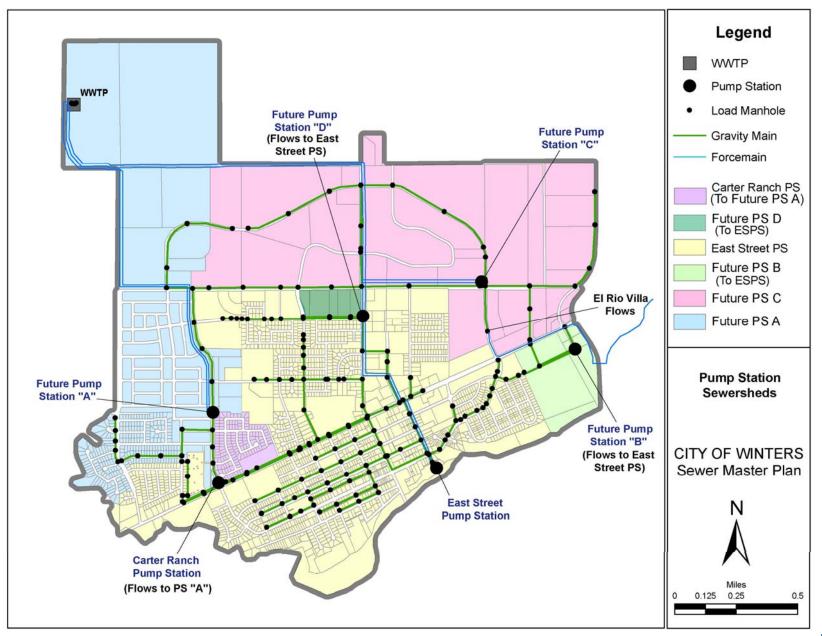
Figure 5-22: Profile for P6

Figure 5-23: Profile for P7

5.2 Pump Station and Force Main Evaluations & Recommendations

This section presents the recommendations for the improvement and expansion of the City's pump stations, which have been based upon the modeling results for the City's future collection system. Due to the location of the City's wastewater treatment plant, all sewage in the City is pumped. Currently, all sewage is pumped by the East Street Pump Station. As the City grows, new pump stations will also pump to the wastewater treatment plant.

5.2.1 PUMP STATION EVALUATION AND RECOMMENDATIONS


The City currently operates and maintains four pump stations: 1) Walnut Lane, 2) El Rio Villa, 3) Carter Ranch, and 4) East Street. For the purpose of this master plan, it was assumed that flows at the Walnut Lane and El Rio Villa Pump Stations are at buildout and, hence, the capacity of these pumps stations is adequate for future conditions.

Hydraulic analysis showed that at buildout, the City will need four more pump stations in order to convey all flows generated throughout the City to the existing wastewater treatment facility at the northwest corner of the urban limits boundary. A lift station, represented as the fourth future pump station in this master plan, is included in this number. The proposed locations of these four new pump stations (i.e. Future Pump Station "A", Future Pump Station "B", Future Pump Station "C", and Future Pump Station "D"), as well as individual pump station sewershed areas, are shown in Figure 5-10. The firm capacities for both existing and future pump stations are listed below:

- 1. East Street Pump Station = 3,160 gpm/4.55 mgd
- 2. Carter Ranch Pump Station = 186^7 gpm/0.27 mgd
- 3. Future Pump Station A = 1,240 gpm/1.79 mgd
- 4. Future Pump Station B = 310 gpm/0.45 mgd
- 5. Future Pump Station C = 2,322 gpm/3.35 mgd
- 6. Future Pump Station D = 106 gpm/0.15 mgd

⁷ Includes passive overflow capacity. Nominal capacity at Carter Ranch PS is 125 gpm (0.18 gmd). City of Winters

Figure 5-24: Pump Station Sewersheds

5.2.1.1 Recommendations for Existing Pump Stations

Carter Ranch Pump Station

The Carter Ranch Pump Station (PS) was designed to convey flows from the Carter Ranch subdivision to Grant Avenue until the land and infrastructure north of Carter Ranch (i.e. Winters Highlands and Callahan Estates) is developed and allows the sewage to flow north. The design capacity of the Carter Ranch PS is 125 gpm (0.18 mgd). Land use analysis, load allocation, and hydraulic modeling showed that at buildout, flows to the Carter Ranch PS will be approximately 170 gpm. Although the pump station was designed for a flow less than this, the design also included a passive overflow from the wet well to the gravity sewer on Main Street. For this reason, the Carter Ranch PS does not require any capacity improvements. The City is planning, however, to complete an upgrade of the Carter Ranch PS. The Carter Ranch lift station was originally designed and approved as a three-phase lift station. It was constructed, however, as a single phase lift station. The City plans to upgrade the pump station (Project 21) from its current electrical configuration to the three-phase configuration for which it was designed, including new pumps and a new electrical/instrumentation system.

East Street Pump Station

The East Street Pump Station (ESPS) is currently the main pump station for the City. All sewers currently drain to this pump station before being lifted and conveyed approximately 2.7 miles to the wastewater treatment facility via the 14-inch East Street Force Main (ESFM). This pump station has three pumps, two at 88 hp and one at 47 hp. Hence, the existing firm capacity of this pump station, with one of the 88 hp pumps being out of service, is approximately 1,600 gpm ⁸ (2.30 mgd) (See Appendix D). As part of this project, a focused analysis of two pump station alternatives was performed in order to determine the optimal configuration. These alternatives are summarized below:

Railroad PS Alternative: This was the configuration proposed in the earlier Draft Sewer Collection System Master Plan (2004). The main component of the alternative was a proposed pump station on Railroad Street near Neimann Street. The Carter Ranch Pump Station would have collected sewage from Carter Ranch, Callahan Estates, and Ogando Hudson and pumped it north through a 3,640 foot long force main to a new gravity sewer in the Winters Highlands area, which would then flow east along Neimann Street to the proposed pump station. In order to solve problems caused by a reach of over-loaded sewers (similar to Locations 2, 3, and 4 on Figure 5-1), 3,510 feet of existing sewers along Neimann, Hemenway, Anderson, and Railroad were proposed to be upsized.

Future PS 'A' Alternative: This is the proposed configuration. The main component of this alternative is the proposed pump station at the southwest corner of Callahan Estates (Future PS A). The existing Carter Ranch PS lifts sewage into the existing dry gravity sewer in Main Street, which then flows north to Future PS A. Future PS A will serve Callahan Estates, Winters Highlands, and the western parcels north of Moody Slough. This pump station pumps directly to the WWTP in a new force main. In order to reduce the flow to the over-loaded sewers in Hemenway, Anderson, and Railroad, a new gravity sewer will extend from Neimann and Hemenway to Railroad and across a soon-to-be-developed parcel to Dutton Street. A new sewer at Adams and Taylor (upstream of the trailer park) diverts flow north and east to Future PS A, reducing the amount of flow in Grant Avenue and onward to the ESPS.

The results of the analysis, presented to the City in July 2005, showed that flows to the ESPS were essentially the same for both alternatives: 3,110 and 3,160 gpm for the Railroad PS Alternative and Future PS A Alternative, respectively. Because both alternatives exceed the capacity of the ESPS, an expansion would be required at the ESPS in both alternatives. The only alternative to an expansion of the ESPS would be to implement the following two modifications to the Railroad PS Alternative:

⁸ Assumes a Hazen-Williams coefficient of 120

- Route the future Gateway force main north to the proposed gravity sewer on Main Street north of Grant Ave., which flows north to the future pump station on Moody Slough Rd (Future PS C in this Master Plan). This would divert 308 gpm from the ESPS.
- Divert all the flow from the Grant Avenue sewers to the CRPS as they pass Main Street near the CRPS. This would divert 390 gpm from the ESPS. This would require a new sewer from Grant Avenue to the CRPS and quadruple the flow to the CRPS.

Ultimately, the Future PS 'A' Alternative was selected by the City. As such, the modifications shown above to avoid ESPS expansion have not been recommended, since the configuration of the selected alternative is poorly suited to accommodate the second modification.

Under buildout conditions, flow from the Carter Ranch and El Rio Villa Pump Stations will cease to enter the ESPS. However, even without the flow from Carter Ranch and El Rio Villa, the ESPS will still need to convey 3,160 gpm (4.55 mgd) at buildout during PWWF events. The existing pumps at the ESPS are not capable of delivering the necessary head to convey PWWF to the wastewater treatment facility. As a result, the pumps at the ESPS will need to be upgraded as part of the ESPS expansion.

As the flows to the ESPS and pressures within the ESFM increase, it will become critical to upgrade portions of the pump station instrumentation. In particular, the flow data and pressure data should be recorded and stored electronically and alarm systems for the pump station functions (e.g. high water, pump failure, etc.) should be upgraded. Collecting this data will allow pump station and force main performance evaluations to be completed, which will allow timing of larger projects (e.g., a parallel force main) to be determined.

5.2.1.2 Recommended Future Pump Stations

Future Pump Station A – Future Pump Station A is located at the southwest corner of the proposed Callahan Estates development. The Carter Ranch PS lifts sewage into the existing dry gravity sewer in Main Street, which flows north to Future Pump Station A. Future PS A will also serve Callahan Estates, Winters Highland, and the western parcels north of Moody Slough Road. A new sewer at Adams and Taylor (upstream of the trailer park) will divert flow north and east to Future PS A, which reduces the amount of flow in Grant Avenue and onward to the East Street Pump Station.

Future Pump Station B – Future Pump Station B, referred to as the "Gateway Area PS", is located south of Grant Avenue near the eastern edge of the City's urban limits, and serves parcels south of Grant Avenue and east of the City's existing development. Flows from this pump station are pumped towards the existing gravity sewers on East Baker Street, where they flow by gravity towards the East Street Pump Station.

Future Pump Station C – Future Pump Station C is located near the intersection of East Main Street and Moody Slough Road. Future PS C will receive flows from El Rio Villa (following the rerouting of El Rio Villa flows in Project 13) and from the majority of the parcels north of Moody Slough Road.

Future Pump (Lift) Station D – Future Pump Station D consists of a lift station on Neimann Street that lifts sewage collected by a deeper sewer parallel to the Neimann portion of the Neimann/Railroad/Dutton sewers (Project 3). This pump station is required since the Neimann sewer is not deep enough to serve the parcels north of Neimann Street. If these parcels do not develop until after Pump Station C is constructed, Pump Station D can be deleted and instead the flows can go to Pump Station C. Sewage is lifted to the proposed gravity sewer on Neimann that will ultimately convey the sewage down Dutton Street and on towards the East Street Pump Station.

All recommended pump station improvement projects are summarized in Table 5-4 and shown on Figure 5-28.

5.2.2 FORCE MAIN EVALUATIONS AND RECOMMENDATIONS

Force mains were modeled using H_2OMap Water Suite 6.0, using the design criteria described in Chapter 4 for the buildout scenario.

East Street Pump Station Force Main Analysis

The existing ESFM is a 14-inch asbestos cement pipe with a length of 14,986 feet. Based on an analysis of the force main under buildout PWWF conditions, assuming a C-value of 100, the operating pressure in the force main was found for two scenarios:

For the first scenario, which assumes that the force mains from Future Pump Station C will tie directly into the existing ESFM, the operating pressure in the ESFM reaches approximately 278 psi at the ESPS, well beyond the limits of its design parameters with respect to surge pressure and depth of cover (based on Figure 14F in AWWA C401). This analysis confirms the necessity of a new 18-inch force main parallel to the existing ESFM from the junction of the force mains from Future Pump Station C to the wastewater treatment facility.

For the second scenario, which assumes that the existing ESFM conveys only the flows from the ESPS, the operating pressure in the ESFM reaches approximately 150 psi at the pump station, which approaches the limits of its design parameters with respect to surge pressure and depth of cover (based on Figure 14F in AWWA C401). It is recommended that a performance evaluation be completed, in order to determine the actual friction factors for the existing force main, immediately after a SCADA system has been installed at the pump station (SCADA installation will enable collection of the data necessary for the evaluation).

The existing force main is 25 years old and a detailed Force Main Rupture Plan should be completed in order to reduce or eliminate a sewage spill into Putah Creek if a rupture were to occur. A rupture in the ESFM is an event that may occur for a variety of reasons, the most common of which is being accidentally broken by a contractor excavating in the vicinity of the force main. An old clarifier adjacent to the East Street Pump Station will contain flows for a short time (approximately one hour at high flows), but should not be the only component of a Force Main Rupture Plan.

For inspection, maintenance, and overflow prevention purposes, it is recommended that a 14-inch parallel force main be constructed between the ESPS and the junction with the proposed Future Pump Station C force mains. The existing force main is 25 years old and this parallel force main would allow the existing force main to be taken out of service during dry weather for condition assessment and maintenance. In the absence of additional friction data, the recommendation for a parallel force main also provides an additional layer of safety during PWWF conditions. For capacity purposes, in addition to inspection, maintenance, and overflow prevention purposes, it is recommended that a parallel 18-inch force main be constructed between the junction with the proposed Future Pump Station C force mains and the wastewater treatment facility. The installation timing for both parallel force main segments will be dependent on the results of the evaluation for the existing force main and the rate of future development projects in the City.

Project 18, presented in **Table 5-4**, includes the recommendation for a parallel 14-inch force main from the ESPS to the junction of two 12-inch pipes from Future Pump Station C. Project 19 presents the recommendation for the second segment of the parallel ESPS force main, an 18-inch force main between the junction with the 12-inch Future Pump Station C force mains and the wastewater treatment facility. A schematic of force main alignments and anticipated velocities⁹ during PDWF and PWWF are shown in **Figures 5-25 and 5-26**, respectively.

⁹ Based on preliminary modeling of force mains. Velocities are presented as planning-level figures, and should be reevaluated prior to design.

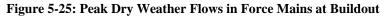
Force Main for Future Pump Station A

Future Pump Station A will pump directly to the wastewater treatment facility through new dual 8-inch force mains, which combine just south of the facility and become a single 12-inch force main.

Force mains from Future Pump Station A will consist of dual 8-inch diameter ductile iron pipes (DIP) for use during wet weather flows. The 8-inch pipes will combine to form one 12-inch force main at County Road 88/County Road 32A and lead to the wastewater treatment plant. One 8-inch force main will be used during dry weather flows. The valving configuration for these force mains is presented in **Appendix E**. Future Pump Station A will be built during the development of Callahan Estates.

Force Main for Future Pump Station C

Sewage entering the pump station is pumped west through new dual 12-inch force mains directly to the parallel East Street force main on Railroad Avenue. From there, sewage in a new 18-inch parallel East Street force main continues directly towards the wastewater treatment facility.


Future Pump Station C will consist of dual 12-inch diameter ductile iron pipes for wet weather flows. The two 12-inch pipes will connect with a future 14-inch force main to form a new 18-inch pipe which will deliver sewage to the treatment plant.


The force mains will be built in phases based around the construction of developments. Force main construction is shown as a series of schematics in **Figure 5-27**. Phase 1 consists of the existing system (14-inch force main from the ESPS). Phase 2 includes the construction of Callahan Estates with Future Pump Station A and associated dual 8-inch and 12-inch force mains. Phase 3 (buildout conditions) includes the construction of Future Pump Station C with dual 12" force mains connecting to the newly constructed parallel 14-inch force main from the ESPS. The three force mains will join to form one 18-inch pipe. Valves at junction points will be necessary to manipulate flows. **Appendix E** presents the recommended valving configuration for PWWF conditions as well as a variety of operational and maintenance scenarios during dry weather flows.

Project No.	DESCRIPTION	PROPOSED DIAMETER (in)	LENGTH (ft)	PROPOSED PUMP STATION FIRM CAPACITY ^a			
2	Pump (Lift) Station on Railroad Avenue						
2	Future Pump Station D			106 gpm/0.15 mgd			
	Pump Station for Southwest Area						
	Future Pump Station A			1,240 gpm/1.79 mgd			
6	Divert CRPS flows form Grant Ave. to Pump Station A						
	Dual Force Mains from Pump Station A to County Road 88/County Road 32A	8	13,800				
	Single Force Main from County Road 88/County Road 32A to Treatment Plant	12	2,300				
7	Pump Station for Gateway Area						
	Future Pump Station B			310 gpm/0.45 mgd			
8	Pump Station B Force Main						
0	Gateway Area Pump Station Force Main	8	360				
	Pump Station for the Northeastern Area						
10	Future Pump Station C			2,322gpm/3.35 mgd			
	Dual Force Mains to the Parallel East Street Pump Station Force Main	14	5,200				
	East Street Pump Station Expansion						
17	East Street Pump Station Expansion ^b			3,160 gpm/4.55 mgd			
	East Street Pump Station Instrumentation						
18	Parallel East St. PS Force Main 1 (from East St. PS to Railroad/Moody Slough)						
10	Parallel Force Main Segment #1	14	4,800				
19	Parallel East St. PS Force Main 2 (from Rai	Iroad/Moody SI	ough to Tre	atment Plant)			
19	Parallel Force Main Segment #2	18	10,100				
	Carter Ranch Pump Station Upgrade						
21	Upgrade pumps and instrumentation at existing PS			125 gpm/0.18mgd			

Table 5-4: Proposed Pump Station Expansion Projects

^{a.} Firm capacity is the capacity of the pump station with the largest pump not operating. ^{b.} The existing firm capacity of the East Street Pump Station is 1,650 gpm.

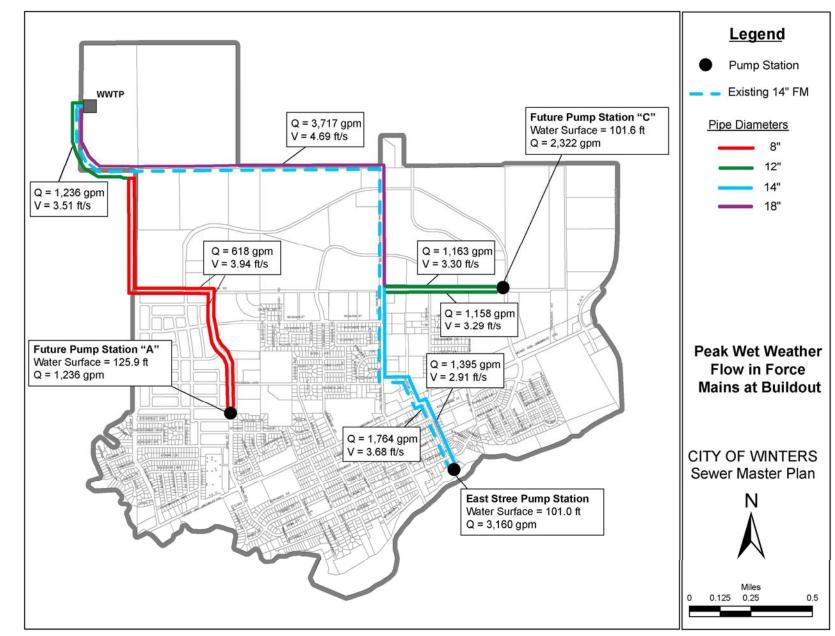


Figure 5-26: Peak Wet Weather Flows in Force Mains at Buildout

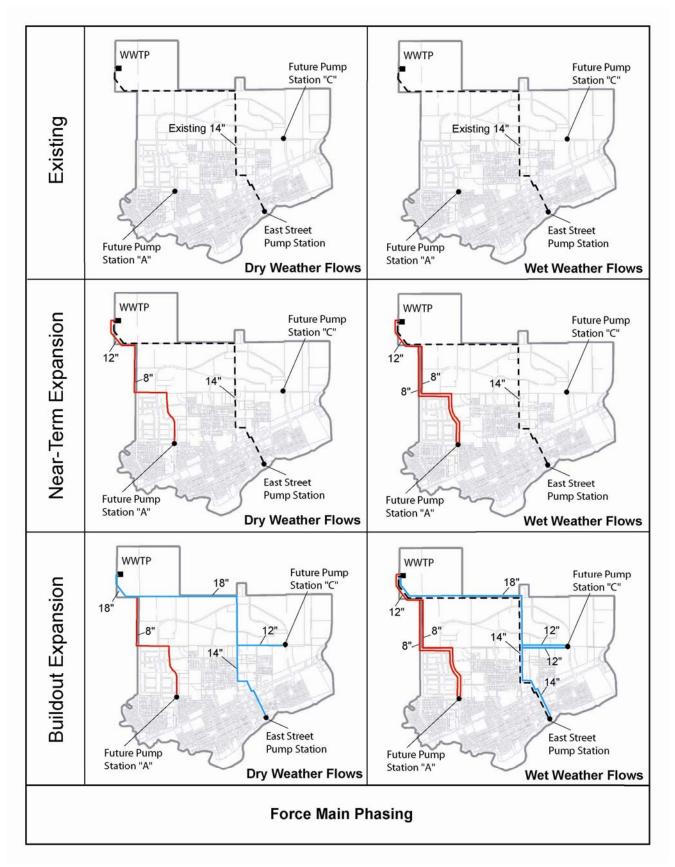


Figure 5-27: Phasing of Force Mains to Buildout

5.3 Future Collection System Expansions

The proposed future collection system expansion layout presented in **Figure 5-28** was developed based on inputs from the City, the Drainage Master Plans, the proposed Winters Highlands and Callahan Estates developments, and hydraulic modeling of the buildout peak wet weather scenario. In all, there are twenty sewer and pump station projects listed in Table 5-6 and shown in Figure 5-28.

Project No.	Description	Proposed Diameter (in)	Length (ft)			
	Neimann/Railroad/Dutton Sewers					
3	Neimann Street at Hemenway to Dutton Street	8	2,540			
	Neimann Street west of Railroad Avenue	10	220			
4	Parallel Deep Sewer on Neimann Street (to Pump Station D)					
4	Neimann Street (Hemenway St. to Railroad Ave.)	8	1,290			
5	Southwest Area Sewers					
5	Taylor St. at Adams Ln. to Ivy Loop at Main St.	8	1,240			
9	Gateway Area Sewers					
3	South of Grant Ave; west of Pump Station B	8	1,860			
	Northeastern Area Sewers					
	Northmost Sewer on County Road 90	8	710			
11	County Road 90 to Moody Slough Road	10	2,440			
	Moody Slough Road to North Main Street	15	1,090			
	North Main Street to Future Pump Station C	18	110			
12	Timbercrest Road Sewers					
IΖ	Timbercrest Road to Moody Slough Road	8	1,200			
	North Main Street Sewers					
13	North Main Street south of Moody Slough	8	980			
	Reroute El Rio Villa Force Main	6	600			

Table 5-5: Future Sewer Expansion Projects

(Continued on next page)

Project No.	Description	Proposed Diameter (in)	Length (ft)			
	Main Street Loop Sewers					
14	Main Street Loop & Railroad Avenue to intersection of Railroad Avenue and Main Street	8	4,200			
	Main Street Loop east of Railroad Avenue	10	690			
	Main Street Loop: east of SP-30067 to north of SP-30109	12	3,150			
	Eastern Main Street Sewers					
15	Main Street Loop: west of SP-30053 to south of SP-30049	8	1,200			
15	Main Street Loop to Main Street at Neimann Street	10	1,730			
	Main Street from Neimann Street to Anderson Avenue	12	1,390			
	Main Street to Future Pump Station A	15	670			
	Moody Slough Sewers	-				
16	Moody Slough Road: east of Main Street to west of SP-30037; Railroad Avenue to Moody Slough Road	8	3,410			
	Moody Slough Road: SP-30037 to Walnut Lane	10	1,680			
	Moody Slough Road to Future Pump Station C	12	1,670			
20	Relief Sewer from Railroad/East Abbey to Main Street					
20	Railroad Ave. and East Main Street	18	1,175			

5.4 Summary of Proposed Sewer Projects

The proposed collection system expansions shown in **Figure 5-28** include one sewer improvement project listed in Table 5-2, eight pump station expansion projects listed in Table 5-4, and eleven sewer expansion projects listed in Table 5-5. An itemized listing of all pipe segments for the proposed expansion projects is presented in Table 5-6. **Figures 5-29 through 5-32** present the proposed collection system expansion in greater detail.

PIPE ID	DESCRIPTION	PROPOSED DIAMETER (in)	LENGTH (ft)	PROPOSED PUMP STATION FIRM CAPACITY				
Project 1 – Dutton Street Sewer Upsize								
SP-30017	East Main St east of East St	10	610					
SP-30019	East Main St east of SP-1286	10	340					
Project 2 –	Pump (Lift) Station on Railroad Avenue							
	Future Pump Station D			106 gpm/0.15mgd				
Project 3 –	Neimann/Railroad/Dutton Sewers							
SP-30121	Neimann Street east of Hemenway Street	8	570					
SP-30123	Neimann Street east of SP-30123	8	460					
SP-30125	Neimann Street west of Railroad Avenue	8	260					
SP-30127	Railroad Avenue south of Neimann Street	8	710					
SP-30129	West of Railroad Avenue	8	540					
SP-30131	Dutton Street south of SP-30129	10	220					
Project 4 -	Parallel Deep Sewer on Neimann Street (to Pump Station I	D)						
SP-30137	Neimann Street east of Hemenway Street	8	570					
SP-30139	Neimann Street east of SP-30137	8	460					
SP-30141	Neimann Street west of Railroad Avenue	8	260					
Project 5 –	Southwest Area Sewers							
SP-30135	Taylor Street north of Adams Lane	8	570					
SP-30133	Ivy Loop west of Main Street	8	670					
Project 6 -	Pump Station for Southwest Area							
	Future Pump Station A			1,240 gpm/1.79 mgd				
	Divert CRPS flows from Grant Avenue to PS A							
	Dual Force Mains from Pump Station A to County Road 88/County Road 32A	8	13,800					
	Single Force Main from County Road 88/County Road 32A to Treatment Plan	12	2,300					
Project 7 –	Pump Station for Gateway Area							
 (Continued on	Future Pump Station B			310 gpm/0.45 mgd				

Table 5-6: Itemization of all Sewer Improvement and Expansion Projects

(Continued on next page)

5. Sewer System Analysis & Recommendations

PIPE ID	DESCRIPTION	PROPOSED DIAMETER (in)	LENGTH (ft)	PROPOSED PUMP STATION FIRM CAPACITY					
Project 8 – Pump Station B Force Main									
SP-30015									
Project 9 – Gateway Area Sewers									
SP-30001	South of Grant Avenue & Timbercrest Road	8	510						
SP-30003	South of Grant Avenue & County Road 90	8	510						
SP-30007	West of Pump Station B	8	840						
Project 10 -	- Pump Station for the Northeastern Area								
	Future Pump Station C			2,322 gpm/3.35 mgd					
	Dual Force Mains to the Parallel East Street Pump Station Force Main	12	5,200						
Project 11 -	- Northeastern Area Sewers								
SP-30087	Northmost Sewer on County Road 90	8	710						
SP-30089	County Road 90 south of SP-30087	10	950						
SP-30091	County Road 90 south of SP-30089	10	500						
SP-30093	Moody Slough Road west of County Road 90	10	990						
SP-30085	Moody Slough Road west of SP-30093	15	950						
SP-30077	North Main Street north of Moody Slough Rd.	15	140						
SP-30109	North Main Street to Future Pump Station C	18	110						
Project 12 -	- Timbercrest Road Sewers								
SP-30105	Timbercrest Road north of Grant Avenue	8	680						
SP-30083	Timbercrest Road north of SP-30105	8	520						
Project 13 -	- North Main Street Sewers								
SP-30081	North Main Street south of Moody Slough	8	980						
	Reroute El Rio Villa Force Main	6	600						
Project 14 -	- Main Street Loop Sewers								
SP-30053	Westernmost Sewer on Loop for Project 14	8	1,100						
SP-30055	Main Street Loop east of SP-30053	8	1,020						
SP-30057	Main Street Loop west of Railroad Avenue	8	720						
SP-30059	Railroad Avenue south of Main Street Loop	8	880						
SP-30061	Railroad Avenue south of SP-30059	8	480						
SP-30067	Main Street Loop east of Railroad Avenue	10	690						
SP-30069	Main Street Loop east of SP-30067	12	1,260						
SP-30071	Main Street Loop southeast of SP-30069	12	1,190						
SP-30099	Main Street Loop south of SP-30071	12	220						
SP-30101 (Continued on	Main Street Loop south of SP-30099	12	480						

(Continued on next page)

PIPE ID	DESCRIPTION	PROPOSED DIAMETER (in)	LENGTH (ft)	PROPOSED PUMP STATION FIRM CAPACITY				
Project 15 – Eastern Main Street Sewers								
SP-30049	Main Street Loop west of SP-30053	8	510					
SP-30051	Main Street Loop south of SP-30049	8	690					
SP-30027	Main Street Loop north of Moody Slough Road	10	430					
SP-30239	Moody Slough Road east of Main Street Loop	10	590					
SP-30299	Main Street south of Moody Slough	10	710					
SP-30301	Main Street south of Neimann Street	12	620					
SP-30303	Main Street north of Anderson Avenue	12	770					
SP-30305	Main Street to Future Pump Station A	15	670					
Project 16 -	- Moody Slough Sewers							
SP-30097	Moody Slough Road east of SP-30029	8	750					
SP-30031	Moody Slough Road east of SP-30097	8	820					
SP-30033	Moody Slough Road east of SP-30031	8	380					
SP-30035	Moody Slough Road east of SP-30033	8	730					
SP-30037	Moody Slough Rd. west of Railroad Avenue	10	650					
SP-30063	Railroad Avenue north of Moody Slough Rd.	8	740					
SP-30079	Moody Slough Road east of Railroad Ave.	10	1,030					
SP-30103	Moody Slough Road east of SP-30079	12	1,530					
SP-30295	Moody Slough Road to Future Pump Station C	12	140					
Project 17 -	- East Street Pump Station Expansion							
	East Street Pump Station Expansion			3,160 gpm/4.55 mgd				
	East Street Pump Station Instrumentation							
Project 18 -	Parallel East St. PS Force Main 1 (from East St. PS to	Railroad/Moody	y Slough)					
	Parallel Force Main Segment #1	14	4,800					
Project 19 -	Parallel East St. PS Force Main 2 (from Railroad/Mood	y Slough to Tre	eatment Pla	nt)				
	Parallel Force Main Segment #2	18	10,100					
Project 20 -	- Relief Sewer from Railroad/East Abbey to Main Street							
SP-30119	Railroad Ave. and East Main Street	18	1,175					
Project 21 -	- Carter Ranch Pump Station Upgrade							
	Upgrade pumps and instrumentation at existing PS			125 gpm/0.18mgd				

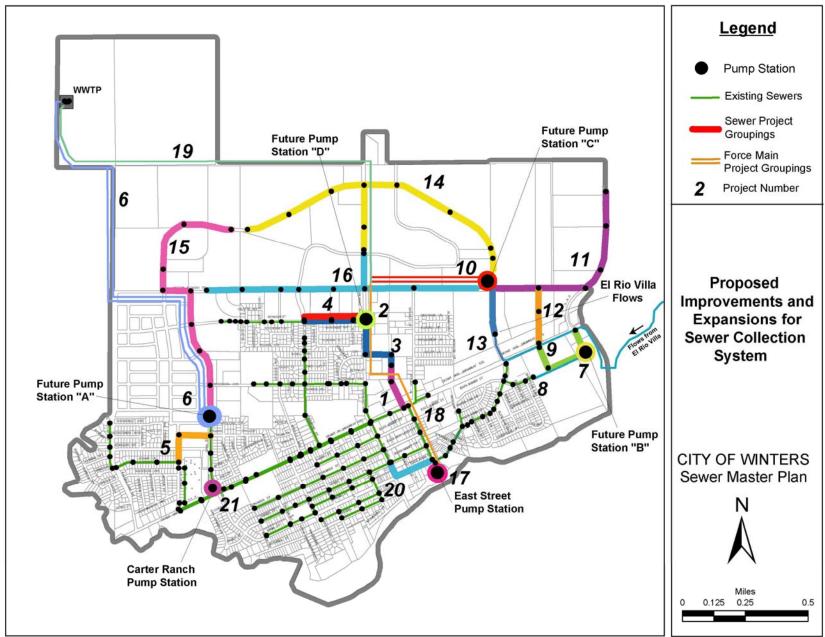


Figure 5-29: Projects 2, 3, 4, 5, 6, and 21

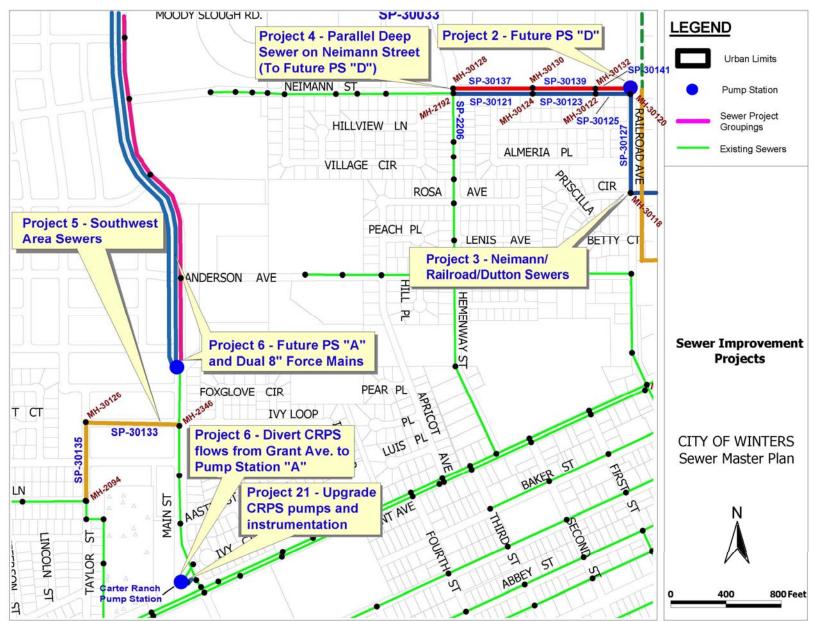


Figure 5-30: Projects 7, 8, 9, 10, 11, 12, and 13

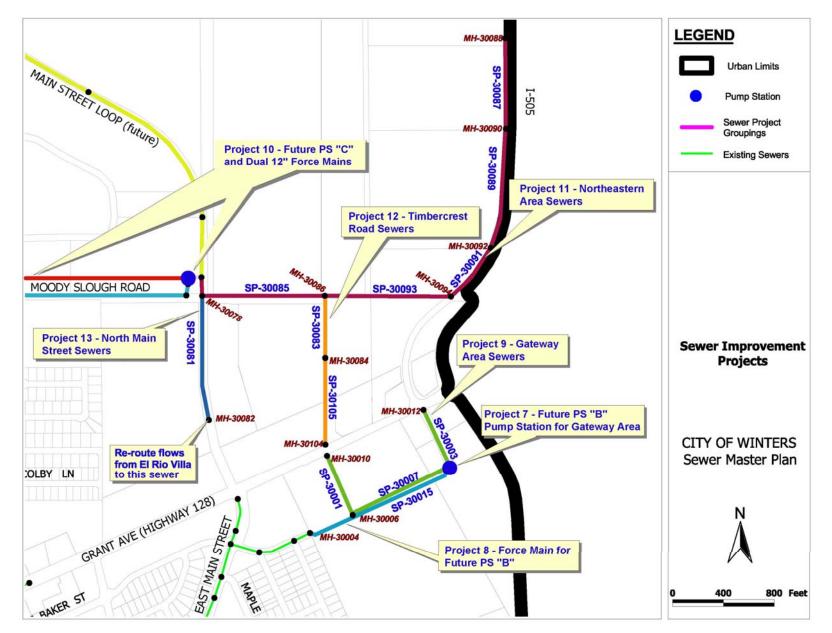


Figure 5-31: Projects 1, 3, 17, 18, and 20

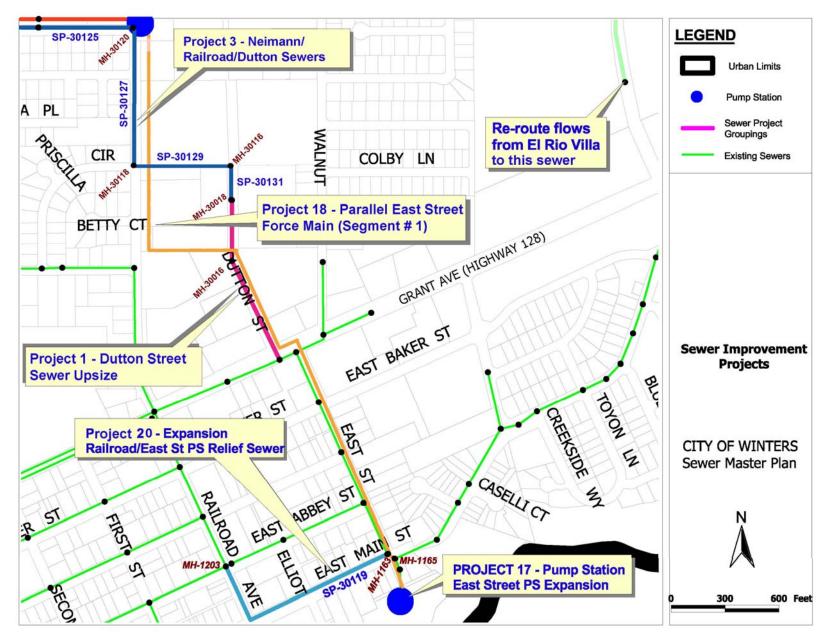
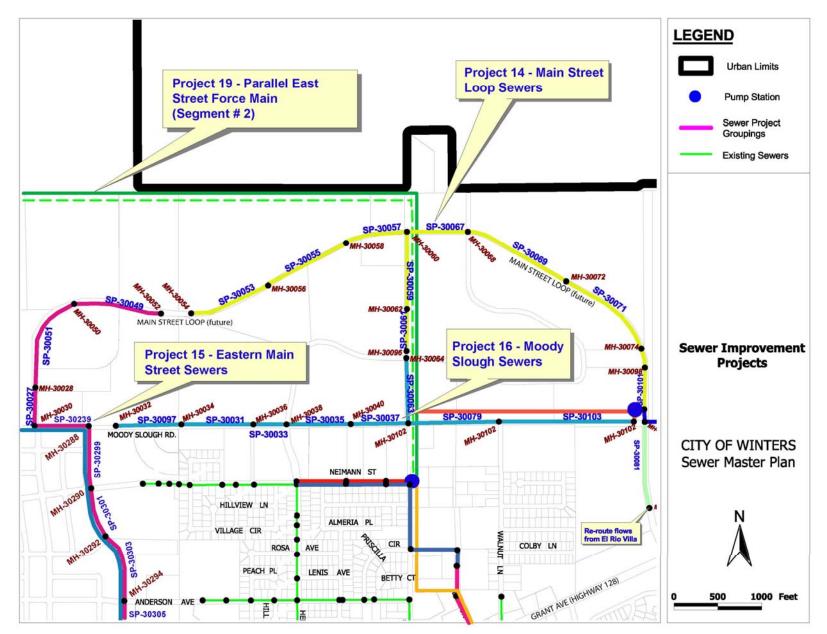



Figure 5-32: Projects 14, 15, 16, and 19

CHAPTER 6 CAPITAL IMPROVEMENT COSTS

Chapter Synopsis: This chapter presents the cost estimation criteria and estimated project cost for the recommended capacity improvement and expansion projects presented in Chapter 5. Detailed cost breakdowns for each project are documented in the project cost spreadsheet in Appendix A.

6.1 Cost Estimation Criteria

The following cost estimation criteria were used to develop typical planning level capital cost estimates for the identified sanitary sewer and pump station improvement projects.

6.1.1 SANITARY SEWER AND PUMP STATION COSTS

Sanitary sewer installation costs vary according to several factors including pipe materials, complexity of construction, traffic control, and street repair. The cost used in this Master Plan for installation of sewer pipes includes mobilization, traffic control, trenching, dewatering, pipe installation and lateral connections, manholes, and pavement replacement. This construction cost excludes contingency and is based on sewer installation costs used by the City in estimating project costs for the capital improvement plan (CIP).

Pump station costs were estimated based on cost curve data compiled by Robert Sanks and presented in Figure 29-3 of <u>Pumping Station Design</u> by Sanks. The Sanks cost curve, considered the "standard of the industry", was developed using historical construction costs of submersible wastewater pumping stations.

6.1.2 CONSTRUCTION CONTINGENCY AND PROJECT IMPLEMENTATION MULTIPLIER

A construction contingency and project implementation multiplier of 43 percent was applied to each potential improvement project estimated installation cost.¹⁰ The contingency is used to cover:

- Potential construction issues unforeseen at the planning level
- Administration costs
- Environmental assessments and permits
- Planning and engineering design
- Construction administration and management
- Legal fees

6.1.3 COORDINATION WITH DRAINAGE, WATER, AND ROAD IMPROVEMENT PROJECTS

It is assumed that the construction schedule for expansion projects for new development areas will be coordinated with projects recommended by the City's Drainage Master Plan. Hence, increased costs for trenchless crossings of the future storm drainage system were not considered in estimating project costs. In addition to drainage improvement projects, where applicable, all recommended projects should be coordinated with projects recommended by the City's Water Master Plan and roadway rehabilitation projects.

6.2 Capacity Improvement & Expansion Projects

One sewer capacity improvement project, eight pump station expansion projects, and eleven sewer expansion projects were identified in Chapter 5 to correct existing wet weather conveyance deficiencies and serve the future buildout of the City. These projects and their associated costs are listed in Table 6-1 and shown in **Figures 5-29 through 5-32**. The implementation schedule for expansion projects will be dependent on development timing in the City.

¹⁰ The City uses an overhead factor of 1.43 in estimating costs for CIP projects. The 1.43 overhead factor is based on historical experience where, on an average, construction costs for CIP projects are approximately 70 percent of the total project costs. Hence, for budgeting purposes, it is assumed that the overhead factor is 1.43 (i.e. 1.00/0.70 = 1.43)

The total length for these projects is approximately 0.2 miles of upsizing existing sewers, 6.9 miles of force main, and 6.2 miles of future gravity sewers. The associated total estimated capital cost for all projects is 17.2 million. Detailed cost estimates are included in **Appendix A**.

PROJECT NO.	DESCRIPTION	FIRM CAPACITY ^a (gpm)	LENGTH (ft)	ESTIMATED CAPITAL COST ^b
Existing Ca	apacity Deficiency Projects			
1	Dutton Street Sewer Upsize		950	\$201,000
		Subtotal	950	\$201,000
Proposed I	Pump Station Expansion Projects			
2	Pump (Lift) Station on Railroad Avenue	106		\$465,000
6	Future Pump Station A for Southwest Area	1,240		\$1,859,000
6	Dual Force Mains from Future Pump Station A		16,100	\$2,089,000
7	Future Pump Station B for Gateway Area	310		\$930,000
8	Future Pump Station B Force Main		360	\$37,000
	Future Pump Station C for Northeastern Area	2,170		\$2,832,000
10	Dual Force Mains to Parallel E. Street PS Force Mains		5,200	\$804,000
47	East Street Pump Station Expansion	3,160		\$1,430,000
17	East Street Pump Station Instrumentation Updates			\$69,000
18	Parallel E. St. PS Force Main Segment #1		4,800	\$1,030,000
19	Parallel E. St. PS Force Main Segment #2		10,100	\$2,423,000
21	Carter Ranch PS Upgrade	125		\$189,000
	· · ·	Subtotal	29,860	\$14,156,000
Future Col	ection System Expansion Projects			
3	Neimann/Railroad/Dutton Sewers		2,760	\$341,000
4	Parallel Sewers on Neimann Street (to Pump Station D)		1,290	\$160,000
5	Southwest Area Sewers		1,240	\$154,000
9	Gateway Area Sewers		1,860	\$230,000
11	Northeastern Area Sewers		4,350	\$829,000
12	Timbercrest Road Sewers		1,200	\$149,000
13	North Main Street Sewers		1,580	\$196,000
14	Main Street Loop Sewers		8,040	\$1,274,000
15	Eastern Main Street Sewers		6,280	\$1,059,000
16	Moody Slough Sewers		9,330	\$1,056,000
20	Railroad/East Abbey to Main Street Relief Sewer		1,175	\$398,000
	· ·	Subtotal	39,105	\$5,846,000
22	Master Plan Implementation and Management $^{\circ}$			\$1,011,000
		TOTAL	69,915	\$21,214,000

^a Firm capacity is the capacity of the pump station with the largest pump not operating.

^b Rounded up to the nearest \$1,000.

^c Assume cost to be 5% of the total estimated capital cost for projects 1 through 21. A small portion of the cost includes additional engineering analysis for certain recommended projects.

6.3 Additional Recommendations

Following are the recommendations that were developed related to the other objectives of this Master Plan.

6.3.1 H₂OMAP SEWER SYSTEM HYDRAULIC MODEL

The H_2OMap Sewer model developed for this Master Plan provides the City with a valuable tool for analyzing the capacity of the sewer system at a planning level. The model can also be used to test the impact of development proposals. The model should be updated periodically to reflect changes in the sewer system (new sewer construction and any development) and revised flow information.

6.3.2 FLOW MONITORING DATA

It is recommended that a system-wide temporary flow monitoring program be conducted to collect data and refine the hydraulic model by:

- refine the dry weather sewage generation factors for various land use categories;
- evaluate groundwater infiltration (GWI) and rainfall-dependent inflow/infiltration (RDI/I) rates;
- develop diurnal variation curves for different land use categories;
- develop the shape of the wet weather response hydrograph for different areas of the City;
- calibrate the model under fully dynamic conditions; and
- refine the system capacity analysis and recommended capital improvement projects

The existing ADWF factors and peaking factors used to develop the design flows (i.e. PWWF) are considered to result in relatively conservative design flows. Modifying sewer loading and I/I loading based on evaluation of flow monitoring data could therefore reduce the number or extent of the recommended sewer capacity improvement projects.

The flow generation factor for single family parcels is the most critical parameter to measure during flow monitoring programs. Based on a quick review of the Winters' sewer system, it appears that the manhole at Taylor Street and Grant Avenue would be a good candidate for dry weather flow monitoring as it appears to have a very uniform sewer shed of single family dwelling units. Monitoring the amount of sewage flowing to the Carter Ranch Pump Station would be a good measurement of sewage being generated by newer single family dwelling units. During the wet weather months, measuring the amount of flow at the manhole on Grant Avenue between Railroad Avenue and Dutton Street would allow the systems response to rain storms to be observed. The best calibration data would be the flow data entering the ESPS and if the ESPS Instrumentation Upgrade Project has been completed, the data from the new SCADA system can be used. Additional dry weather and wet weather sites may be necessary.

Confirming the sewage generation flowrates and connection location(s) of the larger point loads (the various schools and Mariani) would improve the accuracy of the model and may reduce the extent or eliminate some of the projects. Monitoring flows along Edwards Street is recommended (See Section 5.1.2.4 for additional discussion).

The cost of a dry and wet weather flow monitoring program including dynamic modeling and refining the capital improvement projects would range between \$60,000 and \$90,000. If the instrumentation upgrade is performed before the flow monitoring is started, the cost of the flow monitoring program could be reduced.

6.3.3 EAST STREET PUMP STATION AND FORCE MAIN EVALUATION

The East Street Pump Station (ESPS) and Force Main (ESFM) are critical components of the City's infrastructure. Currently, 100 percent of the City's sewage is pumped by the ESPS and conveyed by the

ESFM. The pump station and force main were constructed in 1979 and the end of the useful life of some mechanical components is approaching. Even though the City did upgrade some of the electrical components at the ESPS several years ago, a detailed evaluation of the ESPS and ESFM, including a condition assessment and hydraulic analysis, will allow proper planning for replacement or rehabilitation, as necessary.

As described in Section 5.2.1, the preliminary force main analysis showed that the surge pressure in the existing force is very near to the design parameters. The existing force main is Class 150 psi (according to the construction specifications). The flowrate which corresponds to a 140 psi operating pressure can be calculated after the roughness coefficient is measured. The best way to determine the roughness coefficient would be to measure the pressure at the beginning of the force main and near the end of the force main along with the flowrate. By installing a temporary pressure recorder near the end of the force main instead of using the free water surface elevation of the treatment plant to determine the headloss in the pipeline eliminates the need to estimate exit losses as the force main discharges into the treatment plant basins.

This evaluation should be performed after the ESPS Instrumentation Upgrade Project (Project 17) and prior to the ESPS expansion.

6.3.4 FORCE MAIN RUPTURE PLAN(S)

As noted in Section 5.2.2, a detailed Force Main Rupture Plan is recommended for the East Street Force Main, as well as the force mains from other recommended future pump stations. The development of force main rupture plans will reduce or eliminate the impacts of a sewage spill if a rupture were to occur. Ruptures in force mains are events that may occur for a variety of reasons, the most common of which is being accidentally broken by a contractor excavating in the vicinity of the force main.

6.3.5 SEWER SYSTEM MANAGEMENT PLAN (SSMP)

Historically, Winters has relatively few sewer overflows. Sewer overflows can be caused by many factors including, root clogs, grease clogs, broken pipes, wet weather infiltration, pump station mechanical failure, vandalism, illegal disposal of wastes, and power failures. State regulators have recently adopted a statewide Waste Discharge Requirement (WDR) that will require all collection system agencies to prepare a Sewer System Management Plan. Because of the broad range of factors that cause overflows, the WDR is also broad and regulates aspects of capacity, management, operations, and maintenance, or CMOM for short. Winters should proactively meet the requirements of the SSMP.

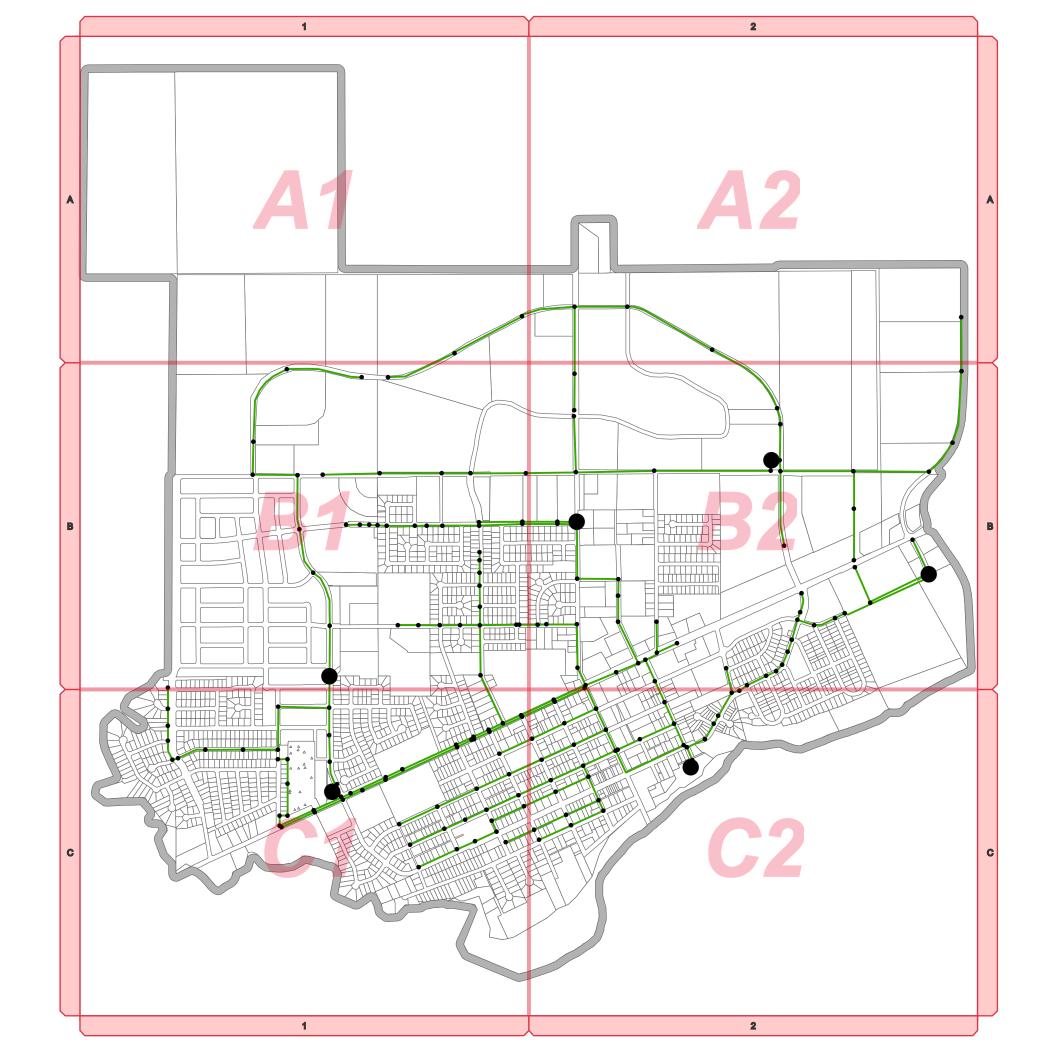
6.3.6 MISCELLANEOUS

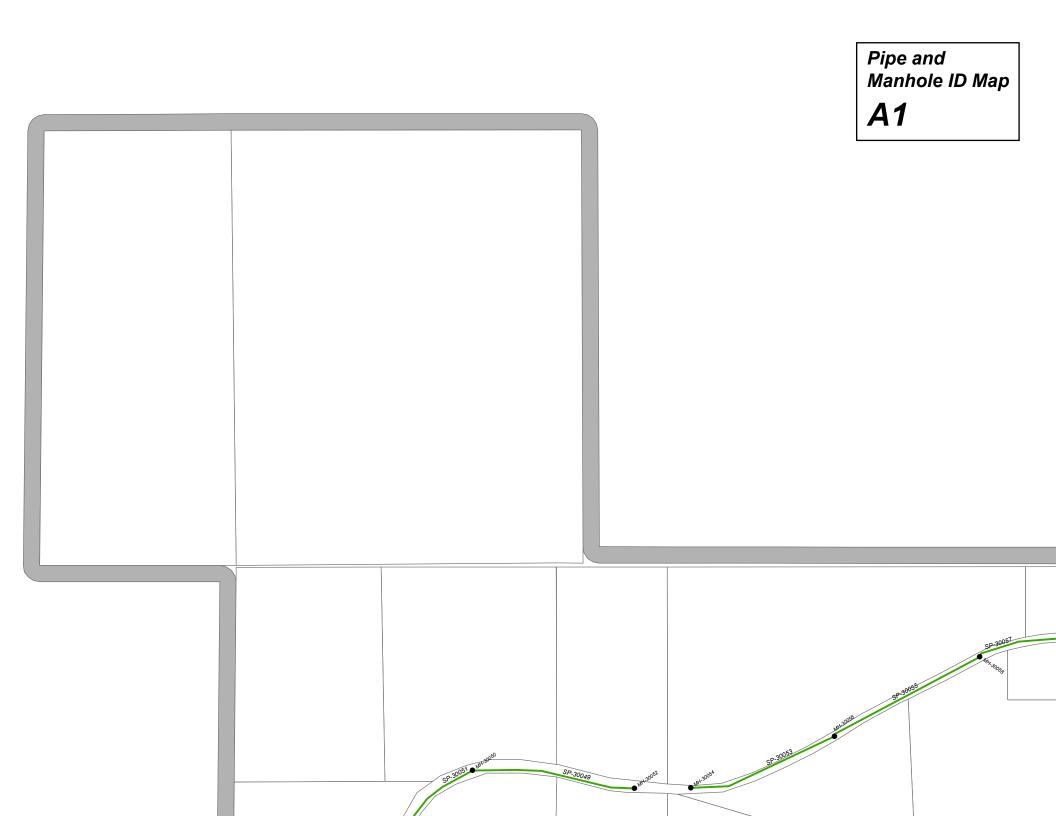
- Uncover manholes that are paved over on Grant Avenue.
- Survey the invert elevations of SP-1290 on Grant Avenue. See Section 5.1.2.4 for more discussion.
- Reconfigure manholes MH-2192 on Neimann Street at Hemenway Street and MH-2194 on Taylor Street. See Section 5.1.2.4 for additional discussion.
- Implement a cleaning and televising inspection program.

REFERENCES

- 1. AirPhoto USA, Winters City-wide Orthorectified Aerial Photo, November 5, 2002.
- 2. Bloodgood, D.E. and J.M. Bell., Manning's Coefficient Calculated From Test Data. Journal of the Water Pollution Control Federation, 176-183, February, 1961.
- 3. CH2M Hill, "City of Winters Sewer System Master Plan," May 1992.
- 4. City of Winters, "Gateway Master Plan," April 1993, Draft Amendment December 2000.
- 5. City of Winters, "General Plan Background Report," May 1992.
- 6. City of Winters, "General Plan Policy Document," May 1992, Housing Element Revised April 1994.
- 7. City of Winters, "Improvement Standards," July 2003.
- 8. Creegan & D'Angelo, "Sewer Master Plan Update Greyhawk Development," Draft, February 2001.
- 9. H₂OMAP Sewer Version 5.0 Users Guide, 2003.
- 10. Jepperson, R.W., Analysis of Flow in Pipe Networks. Ann Arbor Science Publishers Inc., Michigan.
- 11. Larry Walker & Associates, "Sewer Master Plan Update Wastewater Treatment Facilities," December 2000, Supplement Report April 2001.
- 12. Laugenour & Meikle, "Winters Highland and Callahan Tentative Map & Preliminary Utility Plans," November 2003.
- May, D.K., A.W. Peterson, and N. Rajaratnam, A Study of Manning's Roughness Coefficient for Commercial Concrete and Plastic Pipes. University of Alberta, T. Blench Hydraulics Laboratory Technical Report, 1986.
- 14. Ponticello Enterprises, "General Plan Land Use Diagram Amendment Map," June 2003.
- 15. Sank, Robert L., Pump Station Design, Butterworth-Heinemann, 1998.
- Straub, L.G., C.E. Bowers, and M. Pilch, Resistance to Flow in Two Types of Concrete Pipe. Technical Paper No. 22, Series B, December, 1960. St. Anthony Falls Hydraulics Laboratory, University of Minnesota.
- 17. Wood Rodgers, "Moody Slough Subbasin Drainage Master Plan," Draft, June 2005.
- 18. Wood Rodgers, "Putah Creek, Dry Creek Subbasins Drainage Master Plan," Draft, July 2005.
- 19. Yolo County, Winters GIS Parcel Map, October 2003.

APPENDIX A

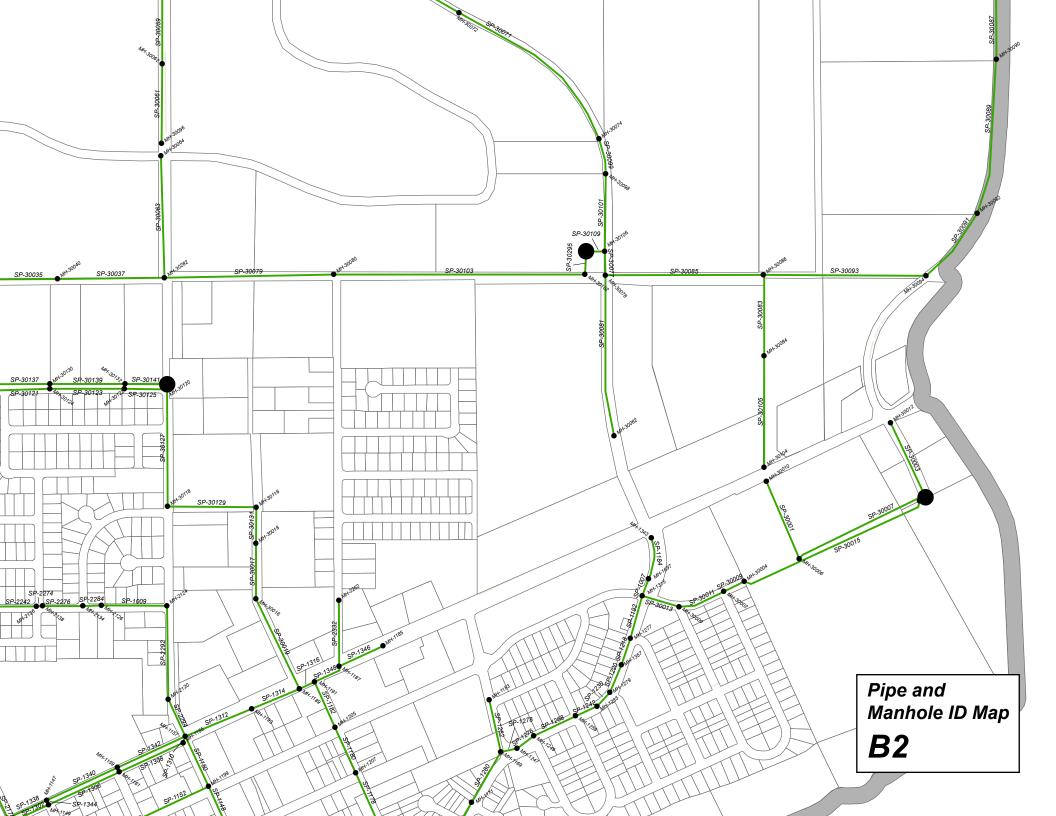

DETAILED CIP COST ESTIMATE INFORMATION

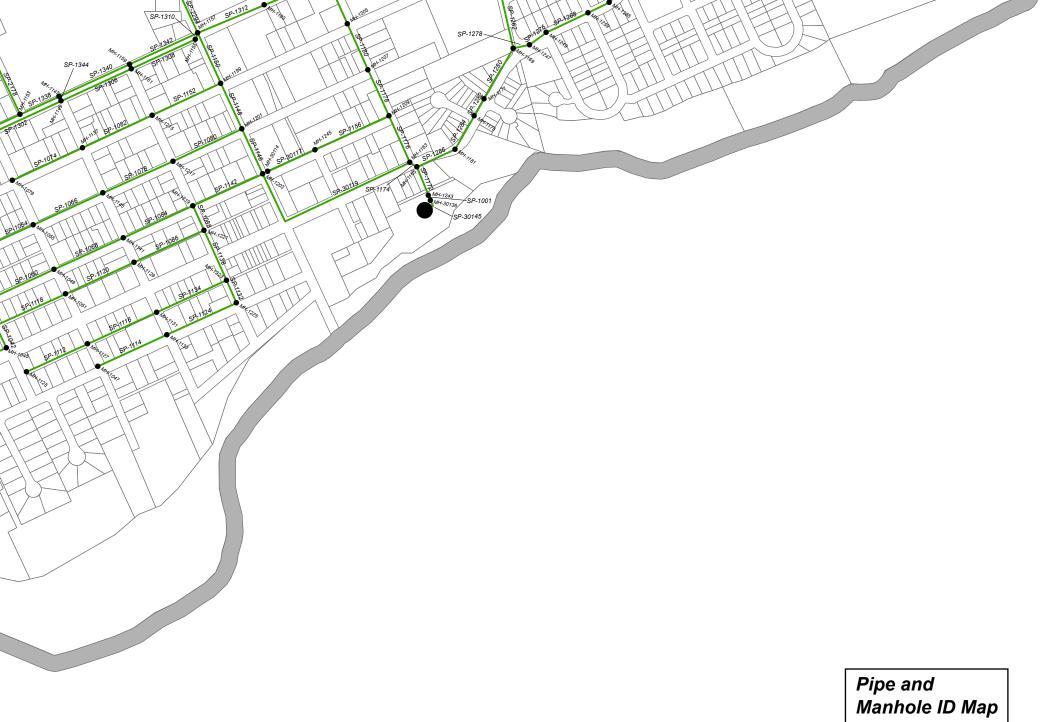

City of Winters 2006 Sewer Collection System Master Plan

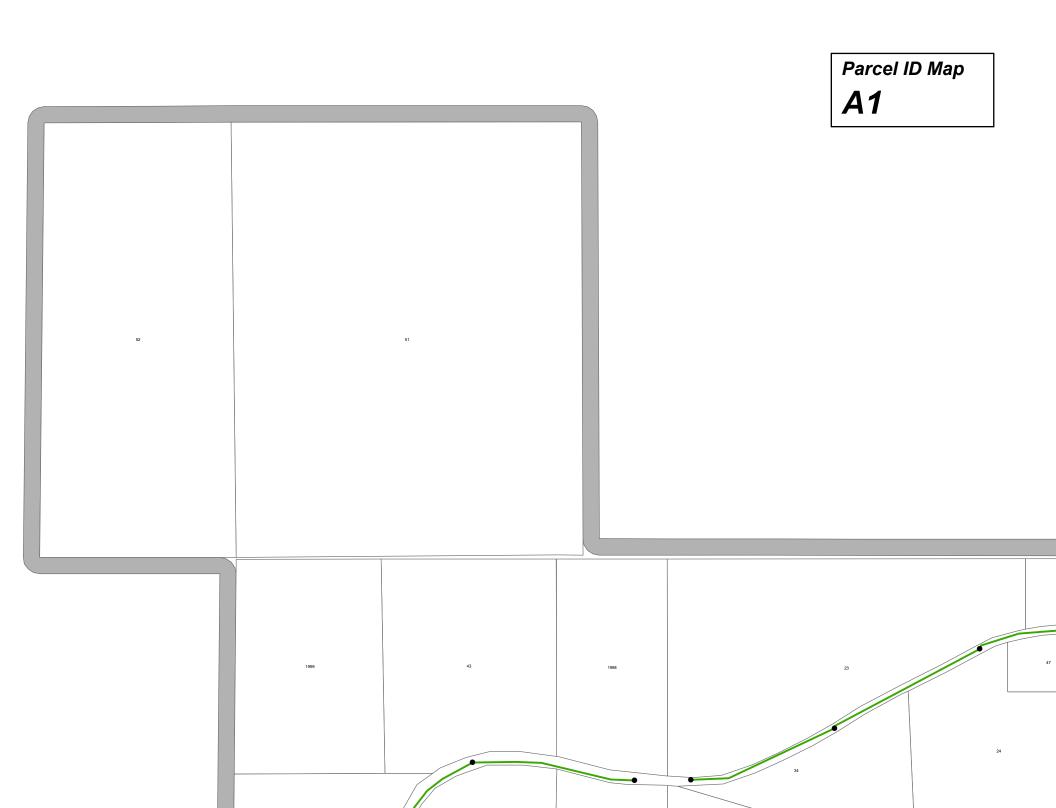
Project No.	Pipe ID	Street	Size	Existing Street?	Units	Unit Cost	Contingency Multiplier	Estimated Capital Cost
1	SP-30017 SP-30019	East Main Street east of East Street East Main Street east of SP-1286	10 in. 10 in.	Yes Yes	610 ft 340 ft	148 \$/LF 148 \$/LF	1.43 1.43	\$ 128,700 \$ 71,700
1 Total		-			950 ft			\$ 201,000
2 2 Total		Future Pump Station D	106 gpm		1	\$ 325,000	1.43	\$ 464,300 \$ 465,000
	SP- 30121	Neimann Street east of Hemenway Street	8 in.	Yes	570 ft		1.43	\$ 70,400
	SP-30123 SP-30125	Neimann Street east of SP-30123 Neimann Street west of Railroad Avenue	8 in. 8 in.	Yes Yes	460 ft 260 ft	86 \$/LF 86 \$/LF	1.43 1.43	\$ 56,800 \$ 32,100
3	SP- 30127	Neimann Street east of Hemenway Street	8 in.	Yes	710 ft	86 \$/LF	1.43	\$ 87,700
	SP- 30129 SP- 30131	Neimann Street east of SP-30137 Neimann Street west of Railroad Avenue	8 in. 10 in.	Yes Yes	540 ft 220 ft	86 \$/LF 86 \$/LF	1.43 1.43	\$ 66,700 \$ 27,200
3 Total		•			2,760 ft			\$ 341,000
4	SP-30137 SP-30139	Neimann Street east of Hemenway Street Neimann Street east of SP-30137	8 in. 8 in.	Yes Yes	570 ft 460 ft	86 \$/LF 86 \$/LF	1.43 1.43	\$ 70,400 \$ 56,800
4 Total	SP-30141	Neimann Street west of Railroad Avenue	8 in.	Yes	260 ft	86 \$/LF	1.43	\$ 32,200
	SP-30135	Taylor Street north of Adams Lane	8 in.	Yes	1,290 ft 570 ft	86 \$/LF	1.43	\$ 160,000 \$ 70,500
5	SP-30133	Ivy Loop west of Main Street	8 in.	Yes	670 ft	86 \$/LF	1.43	\$ 82,800
5 Total		Future Pump Station A	1,240 gpm		1,240 ft	\$1,300,000	1.43	\$ 154,000 \$ 1,859,000
C		Dual Force Mains from Pump Station A to County Road 88/County Road 32A to	8 in.	Yes	8,600 ft	95 \$/LF		\$ 1,165,900 \$ 567,000
6		Single Force Main from County Road	8 in.	No No	5,600 ft	71 \$/LF	1.43	\$ 567,000 \$ 355,300
6 Total		88/County Road 32A to Treatment Plant	12 in.	INO	2,300 ft 16,500 ft	108 \$/LF	1.43	\$ 355,300 \$ 3,948,000
7		Future Pump Station B	310 gpm		10,500 ft	\$ 650,000	1.43	\$ 929,500
7 Total	CD 20015		0.	N	1	71 ቀ /	1.42	\$ 930,000 \$ 26,500
8 8 Total	SP-30015	Gateway Pump Station Forcemain	8 in.	No	360 ft 360 ft	71 \$/LF	1.43	\$ 36,500 \$ 37,000
0	SP-30001	South of Grant Avenue & Timbercrest Road	8 in.	No	510 ft	86 \$/LF	1.43	\$ 63,100
9	SP-30003 SP-30007	South of Grant Avenue & County Road 90 West of Pump Station B	8 in. 8 in.	No No	510 ft 840 ft	86 \$/LF 86 \$/LF	1.43 1.43	\$ 63,100 \$ 103,800
9 Total					1,860 ft			\$ 230,000
		Future Pump Station C	2,170 gpm		1	\$1,980,000	1.43	\$ 2,831,400
10		Dual Force Mains to the Parallel East Street	12 in.	No	5,200 ft	108 \$/LF		\$ 803,100
10 Total		Pump Station Force Main			5,200 ft			\$ 3,635,000
	SP-30087	Northmost Sewer on County Road 90	8 in.	No	710 ft			\$ 87,800
	SP-30089 SP-30091	County Road 90 south of SP-30087 County Road 90 south of SP-30089	10 in. 10 in.	No No	950 ft 500 ft	124 \$/LF 124 \$/LF	1.43 1.43	\$ 168,000 \$ 88,400
11	SP-30093	Moody Slough Road west of County Road 90	10 in.	No	990 ft	124 \$/LF	1.43	\$ 175,000
	SP-30085 SP-30077	Moody Slough Road west of SP-30093 North Main Street north of Moody Slough Rd.	15 in. 15 in.	No No	950 ft 140 ft	179 \$/LF 179 \$/LF	1.43 1.43	\$ 242,900 \$ 35,800
11 Total	SP-30109	North Main Street to Future Pump Station C	18 in.	No	110 ft	196 \$/LF	1.43	\$ 30,800 \$ 829.000
	SP-30105	Timbercrest Road north of Grant Avenue	8 in.	No	4,350 ft 680 ft	86 \$/LF	1.43	\$ 829,000 \$ 84,100
12 12 Total	SP-30083	Timbercrest Road north of SP-30105	8 in.	No	520 ft	86 \$/LF	1.43	\$ 64,300 \$ 149,000
	SP-30081	North Main Street south of Moody Slough	8 in.	No	1,200 ft 980 ft	86 \$/LF	1.43	\$ 149,000 \$ 121,100
13 13 Total		Re-route El Rio Villa Forcemain	6 in.	No	600 ft	86 \$/LF	1.43	\$ 74,200 \$ 196,000
13 10tai	SP-30053	Westernmost Sewer on Loop for Project 15	8 in.	No	1,580 ft 1,100 ft	86 \$/LF	1.43	\$ 196,000 \$ 136,000
	SP-30055 SP-30057	Main Street Loop east of SP-30053 Main Street Loop west of Railroad Avenue	8 in. 8 in.	No No	1,020 ft 720 ft	86 \$/LF 86 \$/LF	1.43 1.43	\$ 126,100 \$ 89,000
	SP-30037 SP-30059	Railroad Avenue south of Main Street Loop	8 in.	No	720 ft 880 ft	86 \$/LF 86 \$/LF	1.43	\$ 89,000 \$ 108,800
14	SP-30061 SP-30067	Railroad Avenue south of SP-30059 Main Street Loop east of Railroad Avenue	8 in. 10 in.	No No	480 ft 690 ft	86 \$/LF 124 \$/LF	1.43 1.43	\$ 59,400 \$ 122,000
	SP-30069	Main Street Loop east of SP-30067	10 in. 12 in.	No	1,260 ft	140 \$/LF	1.43	\$ 253,000
	SP-30071 SP-30099	Main Street Loop southeast of SP-30069 Main Street Loop south of SP-30071	12 in. 12 in.	No No	1,190 ft 220 ft	140 \$/LF 140 \$/LF	1.43 1.43	\$ 239,000 \$ 44,200
	SP-30101	Main Street Loop south of SP-30099	12 in.	No	480 ft	140 \$/LF	1.43	\$ 96,400
14 Total	SP-30049	Main Street Loop west of SP-30053	8 in.	No	8,040 ft 510 ft	86 \$/LF	1.43	\$ 1,274,000 \$ 63,100
	SP-30051	Main Street Loop south of SP-30049	8 in.	No	690 ft	86 \$/LF	1.43	\$ 85,300
	SP-30027 SP-30059	Main Street Loop north of Moody Slough Road Railroad Avenue south of Main Street Loop	10 in. 8 in.	No No	430 ft 880 ft	124 \$/LF 86 \$/LF	1.43 1.43	\$ 76,100 \$ 108,800
15	SP-30061	Railroad Avenue south of SP-30059	8 in.	No	480 ft	86 \$/LF	1.43	\$ 59,400
	SP-30239 SP-30299	Moody Slough Road east of Main Street Loop Main Street south of Moody Slough	10 in. 10 in.	No No	590 ft 710 ft	124 \$/LF 124 \$/LF	1.43 1.43	\$ 104,300 \$ 125,500
	SP-30301 SP-30303	Main Street south of Neimann Avenue Main Street north of Anderson Avenue	12 in. 12 in.	No No	620 ft 700 ft	140 \$/LF 140 \$/LF	1.43 1.43	\$ 124,500 \$ 140,600
	SP-30303 SP-30105	Main Street to Future Pump Station A	12 in. 15 in.	No	670 ft	140 \$/LF	1.43	\$ 171,400
15 Total	SP-30097	Moody Slough Road east of SP-30029	8 in.	No	6,280 ft 750 ft	86 \$/LF	1.43	\$ 1,059,000 \$ 92,700
	SP-30031	Moody Slough Road east of SP-30097	8 in.	No	820 ft	86 \$/LF	1.43	\$ 101,400
	SP-30033 SP-30035	Moody Slough Road east of SP-30031 Moody Slough Road east of SP-30033	8 in. 8 in.	No No	380 ft 730 ft	86 \$/LF 86 \$/LF	1.43 1.43	\$ 47,000 \$ 90,200
16	SP-30037	Moody Slough Rd. west of Railroad Avenue	10 in.	No	650 ft	124 \$/LF	1.43	\$ 114,900
	SP-30063 SP-30079	Railroad Avenue north of Moody Slough Rd. Moody Slough Road east of Railroad Ave.	8 in. 10 in.	No No	740 ft 1,030 ft	86 \$/LF 124 \$/LF	1.43 1.43	\$ 91,500 \$ 182,100
	SP-30103	Moody Slough Road east of SP-30079	12 in.	No	1,530 ft	140 \$/LF	1.43	\$ 307,200
16 Total	SP-30295	Moody SloughRoad to Future Pump Station C	12 in.	No	140 ft 6,770 ft	140 \$/LF	1.43	\$ 28,200 \$ 1,056,000
17		East Street Pump Station Expansion	3,160 gpm		1	\$1,000,000	1.43	\$ 1,430,000
17 Total		East Street Pump Station Instrumentation	0 gpm		1	\$ 48,000	1.43	\$ 68,700 \$ 1,499,000
18		Parallel East Street Forcemain Segment #1	14 in.	Yes	4,800 ft	150 \$/LF	1.43	\$ 1,029,600
18 Total			20 in.	Yes	4,800 ft 2,400 ft	186 \$/LF	1.43	\$ 1,030,000 \$ 638,400
19 10 Total		Parallel East Street Forcemain Segment #2	20 in.	No	7,700 ft	162 \$/LF	1.43	\$ 1,783,800
19 Total 20	SP-300119	Railroad Avenue and East Main Street	18 in.	Yes	10,100 ft 1,175 ft	236 \$/LF	1.43	\$ 2,423,000 \$ 397,300
20 Total					1,175 ft			\$ 398,000
21 21 Total		Carter Ranch PS Upgrade	125 gpm		1 1	\$ 132,000	1.43	\$ 188,800 \$ 189,000
		All Projects Subtotal			74,459 ft	1		\$ 20,203,000
22		Master Plan Implementation and Management						\$ 1,010,150
22 Total								\$ 1,011,000
		GRAND TOTAL			74,459 ft			\$ 21,214,000

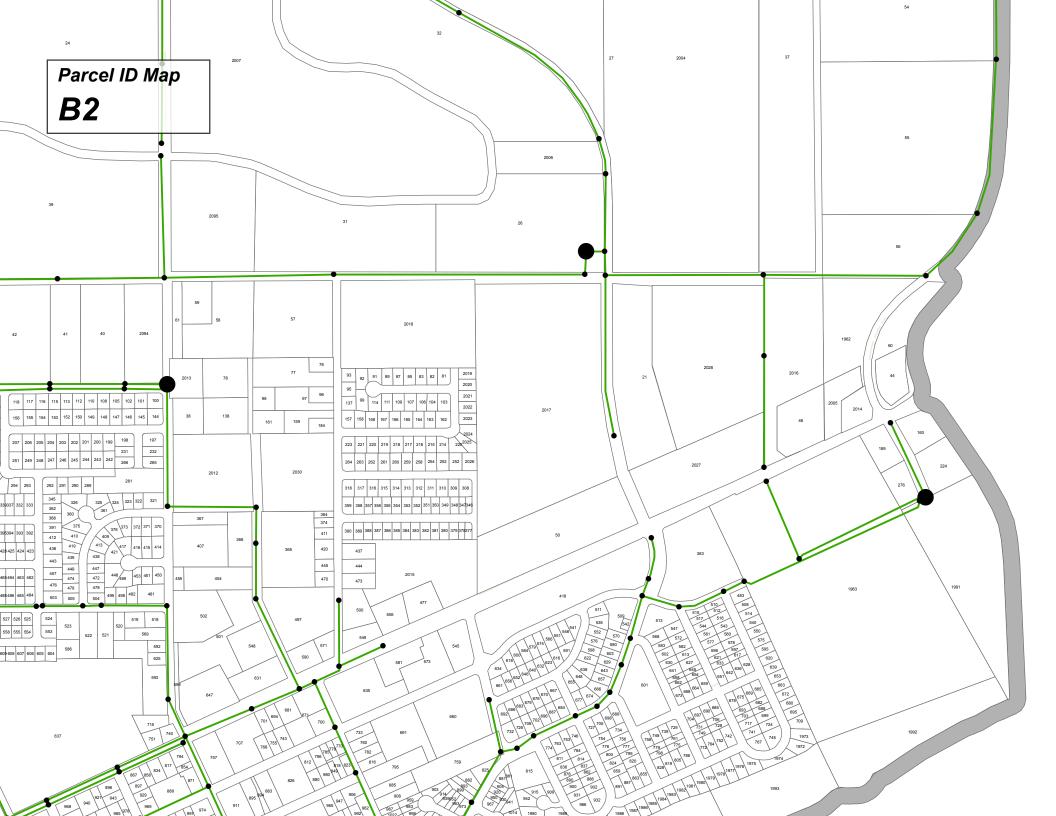
APPENDIX B

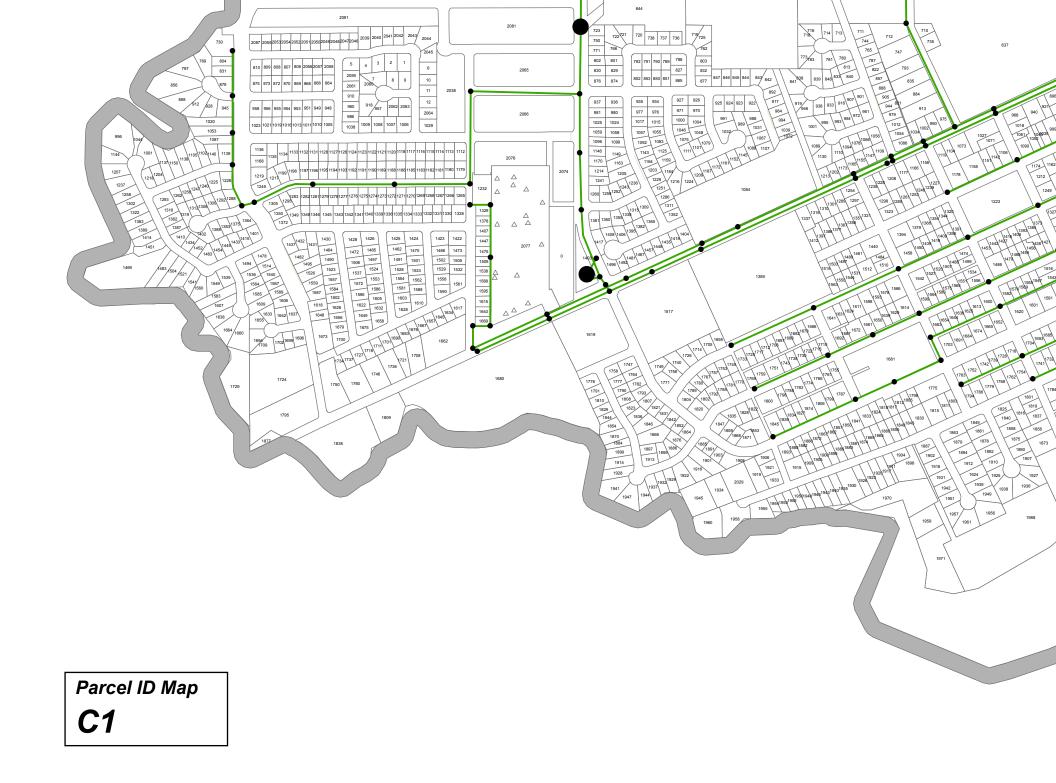
GIS & H2OMAP SEWER FILES AND MISCELLANEOUS MODELING INFO




Pipe and Manhole ID Map **A2**




C2



Parcel ID Map **A2**

C2

Parcel ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Existing Land Use Vacant MR MR MR MR MR MR MR	Buildout Land Use MHR MR MR MR MR	Area (acres) 1.972 0.214 0.196	Area (ft ²) 85,910 9,307	l/l (gpm) 0.822	Buildout ADWF (gpm) 3.697	Buildout PWWF (gpm) 11.913	Buildout PDWF (gpm) 11.091	Manhole
1 2 3 4 5 6 7 8 9 10 11 12 13 14	MR MR MR MR MR	MR MR	0.214			3.697	11,913	11.001	
2 3 4 5 6 7 8 9 10 11 11 12 13 14	MR MR MR MR	MR		9.307		0.400			MH-2298
4 5 6 7 8 9 10 11 12 13 14	MR MR	MR		8,536	0.089	0.188 0.188	0.653 0.646	0.564 0.564	MH-2094 MH-2094
6 7 8 9 10 11 12 13 14		MR	0.181 0.169	7,880 7,368	0.075	0.188 0.188	0.639 0.634	0.564 0.564	MH-2094 MH-2094
7 8 9 10 11 12 13 14		MR MR	0.173 0.189	7,531 8,220	0.072	0.188 0.188	0.636 0.643	0.564 0.564	MH-2094 MH-2094
9 10 11 12 13 14	MR	MR	0.226	9,848	0.094	0.188	0.658	0.564	MH-2094
11 12 13 14	MR MR	MR MR	0.177 0.186	7,702 8,116	0.074	0.188 0.188	0.638 0.642	0.564 0.564	MH-2094 MH-2094
12 13 14	MR MR	MR MR	0.162	7,070 7,353	0.068	0.188 0.188	0.632 0.634	0.564 0.564	MH-2094 MH-2094
14	MR Vacant	MR MR	0.172 2.147	7,483 93,532	0.072	0.188 3.719	0.636 12.052	0.564 11.157	MH-2094 MH-30252
	Vacant	MR	2.428	105,751	1.012	3.500	11.512	10.500	MH-30252
15 16	Vacant Vacant	MR LR	1.250 2.090	54,450 91,050	0.521 0.871	2.188 2.844	7.085 9.403	6.564 8.532	MH-30252 MH-30252
17 18	Vacant Vacant	LR LR	2.214 2.313	96,432 100,736	0.923	2.188 3.063	7.487 10.153	6.564 9.189	MH-30252 MH-30252
19 20	Vacant Vacant	LR LR	2.463 2.473	107,291 107,731	1.026 1.030	3.063 3.063	10.215 10.219	9.189 9.189	MH-30252 MH-30252
21	Vacant	LR	6.648	289,574	2.770	10.618	34.624	31.854	MH-30082
22 23	Vacant Vacant	NC MR	4.413 47.030	192,225 2,048,610	1.839 19.597	7.661 90.533	24.822 291.196	22.983 271.599	MH-30252 MH-30056
24 25	Vacant Vacant	OS PQP	25.930 30.722	1,129,521 1,338,243	10.805 12.802	0.000 41.521	10.805 137.365	0.000 124.563	MH-30056 MH-30034
26 27	Vacant PR	PQP PR	12.672 5.183	552,013 225,784	5.280 2.160	24.306 0.720	78.198 2.880	72.918 0.720	MH-30098 MH-30072
28 29	Vacant Vacant	PR HR	42.809 5.004	1,864,768 217,962	17.839	5.946 18.765	23.785 58.380	5.946 56.295	MH-30068 MH-30252
30	Vacant	MHR	2.058	89,625	0.858	3.859	12.435	11.577	MH-30128
31 32	Vacant Vacant	MHR MHR	11.578 24.510	504,355 1,067,671	4.825 10.213	21.709 45.956	69.952 148.081	65.127 137.868	MH-30080 MH-30068
33 34	Vacant Vacant	MHR PR	2.058 14.148	89,625 616,280	0.858 5.895	3.859 1.965	12.435 7.860	11.577 1.965	MH-30128 MH-30054
35 36	Vacant Vacant	PR NC	42.809	1,864,768 192,225	<u> </u>	5.946	23.785 24.822	5.946	MH-30068 MH-30252
37	Vacant	HI	19.992	870,860	8.331	69.417	216.582	208.251	MH-30086
38 39	Vacant Vacant	HR LR	0.943 22.401	41,094 975,778	0.393 9.334	3.536 35.779	11.001 116.671	10.608 107.337	MH-30120 MH-30040
40 41	Vacant Vacant	LR LR	3.725 2.553	162,281 111,189	1.552 1.064	5.950 4.078	19.402 13.298	17.850 12.234	MH-30132 MH-30130
42 43	Vacant Vacant	LR PQP	6.002 29.945	261,461 1,304,404	2.501 12.478	9.587 52.083	31.262 168.727	28.761 156.249	MH-30130 MH-30252
44 45	Vacant Vacant Vacant	HSC OS	1.218 3.539	53,035 154,163	0.508	2.115 0.000	6.853 1.475	6.345 0.000	MH-30094 MH-2352
46	Vacant	HSC	2.213	96,384	0.922	3.842	12.448	11.526	MH-30104
47 48	Vacant Vacant	PQP HR	3.901 3.611	169,921 157,297	1.626 1.505	9.482 13.541	30.072 42.128	28.446 40.623	MH-30058 MH-30058
49 50	Vacant Vacant	PR PC	1.468 7.304	63,927 318,167	0.612 3.044	0.204 12.681	0.816 41.087	0.204 38.043	MH-2350 MH-1343
51 52	PQP PQP	PQP PQP	129.304 71.224	5,632,461 3,102,539	53.881 29.679	0.000 0.000	53.881 29.679	0.000 0.000	MH-30252 MH-30252
53 54	Vacant	HI	17.253 16.173	751,548	7.189	59.906 22.462	186.907 74.125	179.718 67.386	MH-30088
55	Vacant Vacant	LI	21.837	704,489 951,199	9.099	30.329	100.086	90.987	MH-30088 MH-30090
56 57	Vacant Vacant	LI LR	6.952 5.203	302,849 226,663	2.897 2.168	9.656 8.310	31.865 27.098	28.968 24.930	MH-30092 MH-2262
58 59	Vacant Vacant	HR HR	3.606 1.084	157,092 47,211	1.503 0.452	13.523 4.065	42.072 12.647	40.569 12.195	MH-2262 MH-2262
60 61	Vacant Vacant	LI HR	2.110 0.646	91,908 28,158	0.879 0.269	2.931 2.422	9.672 7.535	8.793 7.266	MH-30094 MH-30120
62 63	Vacant	PQP LR	4.215	183,606 122,229	1.756 1.169	1.859	7.333	5.577	MH-2206
64	Vacant Vacant	MR	0.162	7,071	0.068	0.312	1.004	0.936	MH-2282 MH-2282
65 66	Vacant Vacant	MR MR	0.142	6,206 6,206	0.059	0.273 0.273	0.878 0.878	0.819 0.819	MH-2282 MH-2282
67 68	Vacant Vacant	MR MR	0.142	6,206 6,028	0.059 0.058	0.273 0.266	0.878 0.856	0.819 0.798	MH-2282 MH-2282
69 70	Vacant Vacant	MR MR	0.191 0.185	8,300 8,055	0.080 0.077	0.368 0.356	1.184 1.145	1.104 1.068	MH-2282 MH-2282
71	Vacant	MR	0.149	6,477	0.062	0.287	0.923	0.861	MH-2178
72 73	Vacant Vacant	MR MR	0.180 0.178	7,850 7,770	0.075 0.074	0.346 0.343	1.113 1.103	1.038 1.029	MH-2282 MH-2282
74 75	Vacant Vacant	MR MR	0.178 0.198	7,770 8,630	0.074 0.083	0.343 0.381	1.103 1.226	1.029 1.143	MH-2282 MH-2282
76 77	LR LR	LR LR	0.310 1.715	13,500 74,701	0.129 0.715	0.219 0.219	0.786 1.372	0.657 0.657	MH-2262 MH-2262
78 79	Vacant Vacant	HR MR	1.520 0.037	66,220 1,593	0.633	5.700 0.071	17.733 0.228	17.100 0.213	MH-2262 MH-2178
80 81	Vacant Vacant MR	MR MR MR	0.158	6,888 8,025	0.066	0.304	0.978	0.912	MH-2178
82	MR	MR	0.184 0.156	6,813	0.077	0.188	0.629	0.564	MH-2262 MH-2262
83 84	MR Vacant	MR MR	0.162 0.182	7,055 7,941	0.068 0.076	0.188 0.350	0.632 1.126	0.564 1.050	MH-2262 MH-2282
85 86	MR Vacant	MR MR	0.178 0.180	7,748 7,849	0.074 0.075	0.188 0.346	0.638 1.113	0.564 1.038	MH-2262 MH-2178
87 88	MR Vacant	MR MR	0.155 0.181	6,740 7,867	0.065	0.188 0.348	0.629 1.119	0.564 1.044	MH-2262 MH-2178
89 90	MR Vacant	MR MR	0.163	7,086	0.068	0.188	0.632	0.564	MH-2262 MH-2178
91	MR	MR	0.166	7,241	0.069	0.188	0.633	0.564	MH-2262
92 93	MR MR	MR MR	0.212 0.163	9,236 7,109	0.088 0.068	0.188 0.188	0.652 0.632	0.564 0.564	MH-2262 MH-2262
94 95	Vacant MR	MR MR	0.180 0.171	7,833 7,455	0.075 0.071	0.346 0.188	1.113 0.635	1.038 0.564	MH-2178 MH-2262
96 97	Vacant Vacant	LR LR	0.340	14,832 36,351	0.142	0.543	1.771 4.344	1.629 3.996	MH-2262 MH-2262
98 99	Vacant Vacant MR	LR MR	0.441 0.216	19,215 9,409	0.348 0.184 0.090	0.704	2.296 0.654	2.112 0.564	MH-2262
100	MR	MR	0.205	8,942	0.085	0.188	0.649	0.564	MH-2262 MH-2138
101 102	MR MR	MR MR	0.167 0.170	7,283 7,385	0.070 0.071	0.188 0.188	0.634 0.635	0.564 0.564	MH-2138 MH-2138
103 104	MR MR	MR MR	0.198 0.164	8,616 7,152	0.083 0.068	0.188 0.188	0.647 0.632	0.564 0.564	MH-2262 MH-2262
105 106	MR MR	MR MR MR	0.163 0.157	7,119 6,848	0.068	0.188	0.632	0.564 0.564	MH-2202 MH-2138 MH-2262
107	MR	MR	0.192	8,352	0.080	0.188	0.644	0.564	MH-2262
108 109	MR MR	MR MR	0.165 0.180	7,184 7,819	0.069 0.075	0.188 0.188	0.633 0.639	0.564 0.564	MH-2138 MH-2262
110 111	MR MR	MR MR	0.172 0.169	7,485 7,362	0.072	0.188	0.636 0.634	0.564 0.564	MH-2138 MH-2262
112	MR MR	MR MR MR	0.165	7,193	0.069	0.188	0.633 0.630	0.564	MH-30124
113 114	MR	MR	0.173	7,558	0.066	0.188	0.636	0.564	MH-30124 MH-2262
114 115	MR	MR MR	0.164 0.169	7,153 7,368	0.068	0.188 0.188	0.632 0.634	0.564 0.564	MH-30124 MH-30124

	Existing Land	Buildout Land	Area	Area	1/1	Buildout ADWF	Buildout PWWF	Buildout PDWF	
Parcel ID	Use	Use	(acres)	(ft ²)	(gpm)	(gpm)	(gpm)	(gpm)	Manhole
<u>118</u> 119	MR MR	MR MR	0.192 0.201	8,378 8,758	0.080	0.188	0.644 0.648	0.564 0.564	MH-30124 MH-2150
120 121	MR MR	MR MR	0.165 0.160	7,186 6,967	0.069 0.067	0.188 0.188	0.633 0.631	0.564 0.564	MH-2210 MH-2210
122 123	MR MR	MR MR	0.160 0.172	6,987 7,504	0.067	0.188 0.188	0.631 0.636	0.564 0.564	MH-2210 MH-2188
124 125	MR MR	MR MR	0.167 0.159	7,279 6,923	0.070	0.188 0.188	0.634 0.630	0.564 0.564	MH-2188 MH-2188
126 127	MR MR	MR MR	0.174 0.165	7,601 7,189	0.073 0.069	0.188 0.188	0.637 0.633	0.564 0.564	MH-2188 MH-2206
128 129	MR	MR MR	0.169	7,379 7,084	0.070	0.188	0.634	0.564	MH-2206 MH-2206
130	MR MR	MR MR MR	0.149 0.334	6,509	0.062	0.188	0.626	0.564	MH-2282 MH-2282
131 132	MR	MR	0.197	14,530 8,572	0.082	0.188	0.646	0.564	MH-2178
133 134	MR MR	MR MR	0.186 0.184	8,099 8,002	0.078 0.077	0.188 0.188	0.642 0.641	0.564 0.564	MH-2178 MH-2178
<u>135</u> 136	MR PQP	MR PQP	0.201 0.163	8,734 7,105	0.084	0.188 0.204	0.648 0.680	0.564 0.612	MH-2344 MH-2344
137 138	MR Vacant	MR HR	0.169	7,374 60,360	0.070 0.578	0.188 5.197	0.634 16.169	0.564 15.591	MH-2262 MH-2262
139 140	MR MR	MR MR	0.136 0.132	5,935 5,731	0.057 0.055	0.188 0.188	0.621 0.619	0.564 0.564	MH-2210 MH-2210
141 142	MR MR	MR MR	0.138	5,996 7,254	0.058	0.188	0.622	0.564	MH-2210 MH-2150
143 144	MR MR	MR MR	0.182 0.217	7,917 9,448	0.076	0.188	0.640	0.564 0.564	MH-2178 MH-2138
145	MR	MR	0.177	7,727	0.074	0.188	0.638	0.564	MH-2138
146 147	MR MR	MR MR	0.178 0.170	7,754 7,410	0.074	0.188 0.188	0.638 0.635	0.564 0.564	MH-2138 MH-2138
148 149	MR MR	MR MR	0.173 0.177	7,520 7,728	0.072	0.188 0.188	0.636 0.638	0.564 0.564	MH-2138 MH-2138
150 151	MR MR	MR MR	0.171 0.193	7,434 8,389	0.071 0.080	0.188 0.188	0.635 0.644	0.564 0.564	MH-2138 MH-2178
152 153	MR	MR MR	0.163	7,116 7,284	0.068	0.188	0.632	0.564	MH-2138 MH-2138
155 155	MR MR MR	MR MR MR	0.107 0.173 0.173	7,535 7,520	0.072	0.188	0.636	0.564 0.564	MH-2150 MH-2150 MH-2150
156	MR	MR	0.195	8,475	0.081	0.188	0.645	0.564	MH-2150
157 158	MR MR	MR MR	0.189 0.170	8,223 7,406	0.079	0.188	0.643	0.564	MH-2262 MH-2262
159 160	Vacant Vacant	LR PC/BP	0.648	28,236 47,041	0.270 0.450	1.035 1.875	3.375 6.075	3.105 5.625	MH-2262 MH-30012
161 162	Vacant MR	LR MR	0.619 0.216	26,981 9,413	0.258 0.090	0.989 0.188	3.225 0.654	2.967 0.564	MH-2262 MH-2262
163 164	MR MR	MR MR	0.165 0.160	7,207 6,981	0.069 0.067	0.188 0.188	0.633 0.631	0.564 0.564	MH-2262 MH-2262
165 166	MR MR	MR MR	0.174 0.166	7,563 7,237	0.073	0.188	0.637 0.633	0.564 0.564	MH-2262 MH-2262
167	MR	MR	0.167	7,279	0.070	0.188	0.634	0.564	MH-2262
168 169	MR MR	MR MR	0.167 0.161	7,293 7,002	0.070	0.188	0.634 0.631	0.564 0.564	MH-2262 MH-2210
170 171	MR MR	MR MR	0.158 0.152	6,893 6,601	0.066	0.188 0.188	0.630 0.627	0.564 0.564	MH-2210 MH-2210
172 173	MR MR	MR MR	0.166 0.156	7,217 6,776	0.069	0.188 0.188	0.633 0.629	0.564 0.564	MH-2210 MH-2210
174 175	MR MR	MR MR	0.150 0.176	6,516 7,683	0.063	0.188 0.188	0.627 0.637	0.564 0.564	MH-2210 MH-2210
176 177	MR MR	MR MR	0.210 0.189	9,135 8,237	0.088 0.079	0.188 0.188	0.652 0.643	0.564 0.564	MH-2210 MH-2210
178 179	MR	MR MR	0.205	8,948 6,209	0.085	0.188	0.649	0.564	MH-2210 MH-2210
180 181	MR MR MR	MR MR	0.143	6,400 6,135	0.061	0.188	0.625	0.564 0.564	MH-2210 MH-2210 MH-2210
182	MR	MR	0.227	9,904	0.095	0.188	0.659	0.564	MH-2210
183 184	MR LR	MR LR	0.185 0.316	8,056 13,752	0.077 0.132	0.188 0.219	0.641 0.789	0.564 0.657	MH-2150 MH-2262
185 186	MR MR	MR MR	0.190 0.203	8,295 8,843	0.079	0.188 0.188	0.643 0.649	0.564 0.564	MH-2178 MH-2178
187 188	MR MR	MR MR	0.140 0.139	6,090 6,035	0.058	0.188 0.188	0.622 0.622	0.564 0.564	MH-2210 MH-2210
189 190	Vacant MR	PC/BP MR	0.974 0.133	42,411 5,776	0.406 0.055	1.691 0.188	5.479 0.619	5.073 0.564	MH-30012 MH-2210
191 192	MR	MR MR	0.203	8,861 7,510	0.085	0.188	0.649	0.564	MH-2210 MH-2150
192 193 194	MR MR MR	MR MR MR	0.172	6,228 5,989	0.072	0.188	0.624 0.621	0.564 0.564	MH-2210 MH-2210 MH-2210
195	MR	MR	0.191	8,340	0.080	0.188	0.644	0.564	MH-2210
196 197	MR MR	MR MR	0.186 0.238	8,112 10,371	0.078	0.188	0.642	0.564 0.564	MH-2178 MH-2124
198 199	MR MR	MR MR	0.219 0.177	9,526 7,714	0.091 0.074	0.188 0.188	0.655 0.638	0.564 0.564	MH-2138 MH-2138
200 201	MR MR	MR MR	0.177 0.171	7,718 7,456	0.074 0.071	0.188 0.188	0.638 0.635	0.564 0.564	MH-2138 MH-2138
202 203	MR MR	MR MR	0.171 0.185	7,447 8,051	0.071	0.188	0.635 0.641	0.564 0.564	MH-2138 MH-2138
203 204 205	MR MR	MR MR	0.103	7,529 7,026	0.072	0.188	0.636	0.564 0.564	MH-2138 MH-2150
205 206 207	MR MR MR	MR MR MR	0.181	7,925 8,681	0.076	0.188	0.640	0.564 0.564	MH-2150 MH-2150 MH-2150
208	MR	MR	0.191	8,318	0.080	0.188	0.644	0.564	MH-2210
209 210	MR MR	MR MR	0.160	6,972 7,159	0.067	0.188	0.631	0.564	MH-2210 MH-2210
211 212	MR MR	MR MR	0.158 0.154	6,868 6,723	0.066	0.188 0.188	0.630 0.628	0.564 0.564	MH-2210 MH-2210
213 214	MR MR	MR MR	0.171 0.166	7,433 7,249	0.071 0.069	0.188 0.188	0.635 0.633	0.564 0.564	MH-2210 MH-2262
215 216	MR MR	MR MR	0.153 0.176	6,679 7,674	0.064 0.073	0.188 0.188	0.628 0.637	0.564 0.564	MH-2262 MH-2262
217 218	MR MR	MR MR	0.146 0.186	6,362 8,093	0.061 0.078	0.188 0.188	0.625 0.642	0.564 0.564	MH-2262 MH-2262
219 220	MR MR	MR MR	0.166 0.167	7,228 7,287	0.069	0.188	0.633 0.634	0.564 0.564	MH-2262 MH-2262 MH-2262
220 221 222	MR MR MR	MR MR MR	0.167 0.207	7,296	0.070	0.188	0.634 0.650	0.564 0.564	MH-2262 MH-2262 MH-2178
223	MR	MR	0.186	8,099	0.078	0.188	0.642	0.564	MH-2262
224 225	Vacant MR	PC/BP MR	1.575 0.170	68,594 7,384	0.656 0.071	2.734 0.188	8.858 0.635	8.202 0.564	MH-30012 MH-2262
226 227	MR MR	MR MR	0.147 0.147	6,408 6,401	0.061 0.061	0.188 0.188	0.625 0.625	0.564 0.564	MH-2210 MH-2210
228 229	MR MR	MR MR	0.130 0.169	5,660 7,371	0.054 0.070	0.188 0.188	0.618 0.634	0.564 0.564	MH-2210 MH-2150
230 231	MR MR	MR MR	0.186	8,102 7,441	0.078	0.188	0.642	0.564 0.564	MH-2178 MH-2138
232	MR MR	MR MR	0.175 0.141	7,636	0.073	0.188	0.637	0.564 0.564	MH-2124 MH-2210
233	MR	MR	0.141	6,141	0.059	0.188	0.623	0.564	MH-2210 MH-2210

				outes of parcel_load	0	· ·			
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
236 237	MR MR	MR MR	0.164 0.165	7,136 7,197	0.068 0.069	0.188 0.188	0.632 0.633	0.564 0.564	MH-2210 MH-2210
238 239	MR	MR	0.142	6,182 6,470	0.059	0.188	0.623	0.564	MH-2210 MH-2210
240 241	MR MR	MR MR	0.136	5,942 8,596	0.057	0.188	0.621	0.564 0.564	MH-2210 MH-2178
242 243	MR MR MR	MR MR	0.177 0.176	7,708 7,663	0.074	0.188	0.638	0.564 0.564	MH-2138 MH-2138
243 244 245	MR MR	MR MR	0.170	7,422 7,358	0.073	0.188	0.635	0.564	MH-2138
246	MR	MR	0.183	7,951	0.076	0.188	0.640	0.564	MH-2138 MH-2138
247 248	MR MR	MR MR	0.171 0.161	7,455 7,029	0.071	0.188	0.635	0.564	MH-2138 MH-2150
249 250	MR MR	MR MR	0.179 0.173	7,790 7,557	0.075 0.072	0.188 0.188	0.639 0.636	0.564 0.564	MH-2150 MH-2150
251 252	MR MR	MR MR	0.197 0.204	8,598 8,900	0.082 0.085	0.188 0.188	0.646 0.649	0.564 0.564	MH-2150 MH-2262
253 254	MR MR	MR MR	0.190 0.177	8,275 7,717	0.079	0.188 0.188	0.643 0.638	0.564 0.564	MH-2262 MH-2262
255 256	MR MR	MR MR	0.157 0.164	6,851 7,144	0.065	0.188 0.188	0.629 0.632	0.564 0.564	MH-2210 MH-2210
257 258	MR MR	MR MR	0.156 0.196	6,777 8,533	0.065	0.188 0.188	0.629 0.646	0.564 0.564	MH-2210 MH-2262
259 260	MR MR	MR MR	0.171 0.177	7,462 7,690	0.071	0.188 0.188	0.635 0.638	0.564 0.564	MH-2262 MH-2262
261 262	MR MR	MR MR	0.185 0.195	8,061 8,504	0.077 0.081	0.188 0.188	0.641 0.645	0.564 0.564	MH-2262 MH-2262
263 264	MR MR	MR MR	0.165 0.193	7,185 8,386	0.069 0.080	0.188 0.188	0.633 0.644	0.564 0.564	MH-2262 MH-2262
265 266	MR MR	MR MR	0.208	9,045 8,001	0.087	0.188	0.651 0.641	0.564 0.564	MH-2124 MH-2138
267 268	Vacant	MR MR MR	0.137	5,986 7,470	0.057	0.100	0.849	0.792	MH-2130 MH-2210 MH-2178
269 270	MR MR	MR MR	0.136	5,917 6,540	0.057	0.188	0.621	0.564 0.564	MH-2194 MH-2210
270 271 272	MR MR MR	MR MR MR	0.150	6,556 5,538	0.063 0.053	0.188	0.627	0.564 0.564	MH-2210 MH-2210 MH-2194
272 273 274	MR MR MR	MR MR MR	0.127 0.156 0.147	6,777 6,425	0.053 0.065 0.061	0.188	0.629	0.564 0.564	MH-2194 MH-2210 MH-2210
274 275 276	MR MR Vacant	MR MR PC/BP	0.147 0.149 0.888	6,425 6,502 38,675	0.061 0.062 0.370	0.188 0.188 1.542	0.625	0.564 0.564 4.626	MH-2210 MH-2210 MH-30012
277	MR	MR MR	0.173	7,556	0.072	0.188	0.636	0.564	MH-2150
278 279 280	Vacant MR	MR	0.179 0.156	7,780 6,788 5,005	0.075	0.345	1.110 0.629	1.035 0.564	MH-2210 MH-2194
280 281	MR MR	MR MR	0.138	5,995 57,969	0.058	0.188	0.622	0.564	MH-2194 MH-2138
282 283	Vacant MR	MR MR	0.140	6,088 9,601	0.058	0.269	0.865	0.807	MH-2210 MH-2150
284 285	MR MR	MR MR	0.249 0.206	10,864 8,989	0.104 0.086	0.188 0.188	0.668 0.650	0.564 0.564	MH-2210 MH-2210
286 287	MR MR	MR MR	0.143 0.182	6,216 7,911	0.060 0.076	0.188 0.188	0.624 0.640	0.564 0.564	MH-2154 MH-2150
288 289	MR MR	MR MR	0.139 0.176	6,042 7,675	0.058 0.073	0.188 0.188	0.622 0.637	0.564 0.564	MH-2154 MH-2138
290 291	MR MR	MR MR	0.194 0.160	8,472 6,973	0.081 0.067	0.188 0.188	0.645 0.631	0.564 0.564	MH-2138 MH-2138
292 293	MR MR	MR MR	0.208 0.199	9,051 8,690	0.087 0.083	0.188 0.188	0.651 0.647	0.564 0.564	MH-2138 MH-2150
294 295	MR MR	MR MR	0.165 0.153	7,193 6,670	0.069	0.188 0.188	0.633 0.628	0.564 0.564	MH-2150 MH-2210
296 297	MR MR	MR MR	0.151 0.181	6,575 7,864	0.063	0.188 0.188	0.627 0.639	0.564 0.564	MH-2210 MH-2210
298 299	MR MR	MR MR	0.162 0.176	7,044 7,669	0.068	0.188 0.188	0.632 0.637	0.564 0.564	MH-2210 MH-2210
300 301	MR MR	MR MR	0.170 0.169	7,411 7,367	0.071 0.070	0.188 0.188	0.635 0.634	0.564 0.564	MH-2210 MH-2210
302 303	MR MR	MR MR	0.184 0.165	8,030 7,204	0.077 0.069	0.188 0.188	0.641 0.633	0.564 0.564	MH-2210 MH-2210
304 305	MR MR	MR MR	0.181 0.187	7,898 8,137	0.075	0.188	0.639 0.642	0.564 0.564	MH-2210 MH-2210
306 307	MR MR	MR MR	0.180	7,838 7,253	0.075	0.188	0.639	0.564 0.564	MH-2210 MH-2210
308 309	MR	MR	0.199	8,676 7,146	0.083	0.188	0.647	0.564	MH-2262 MH-2262
310 311	MR MR	MR MR	0.179	7,781 7,613	0.075	0.188	0.639	0.564	MH-2262 MH-2262 MH-2262
312 313	MR MR	MR MR	0.175	7,607 7,942	0.073	0.188	0.637	0.564 0.564	MH-2262 MH-2262 MH-2262
<u>313</u> 314 315	MR MR MR	MR MR MR	0.166 0.184	7,942 7,230 8,002	0.078 0.069 0.077	0.188	0.640	0.564 0.564	MH-2262 MH-2262 MH-2262
315 316 317	MR MR MR	MR MR MR	0.168 0.193	7,332 8,407	0.070	0.188	0.634	0.564 0.564	MH-2262 MH-2262 MH-2262
317 318 319	MR MR MR	MR MR MR	0.193 0.182 0.137	7,921 5,955	0.080	0.188 0.188	0.644 0.640 0.621	0.564 0.564	MH-2262 MH-2262 MH-2154
319 320 321	MR MR MR	MR MR MR	0.137 0.130 0.282	5,955 5,649 12,298	0.057 0.054 0.118	0.188 0.188 0.188	0.621 0.618 0.682	0.564 0.564 0.564	MH-2154
322	MR	MR MR MR	0.130	5,656	0.054	0.188	0.618	0.564	MH-2134 MH-2134 MH-2134
323 324	MR MR	MR	0.149 0.188 0.252	6,482 8,177	0.062	0.188	0.626	0.564	MH-2134 MH-2134
325 326	MR MR	MR MR	0.252	10,956 12,089	0.105	0.188	0.669 0.680	0.564	MH-2134 MH-2134
327 328	MR MR	MR MR	0.185	8,044 7,701	0.077	0.188	0.641	0.564	MH-2150 MH-2150
329 330	MR MR	MR MR	0.192	8,371 8,479	0.080	0.188	0.644	0.564	MH-2150 MH-2150
331 332	MR MR	MR MR	0.170	7,423 8,252	0.071	0.188	0.635	0.564	MH-2150 MH-2150
333 334	MR MR	MR MR	0.195 0.201	8,511 8,745	0.081	0.188	0.645	0.564	MH-2138 MH-2150
335 336	MR MR	MR MR	0.214	9,325 8,004	0.089	0.188	0.653	0.564 0.564	MH-2150 MH-2150
337 338	MR MR	MR MR	0.169 0.246	7,352 10,708	0.070 0.103	0.188 0.188	0.634 0.667	0.564 0.564	MH-2150 MH-2150
339 340	MR MR	MR MR	0.185 0.190	8,067 8,297	0.077 0.079	0.188 0.188	0.641 0.643	0.564 0.564	MH-2150 MH-2150
341 342	MR MR	MR MR	0.183 0.189	7,991 8,246	0.076 0.079	0.188 0.188	0.640 0.643	0.564 0.564	MH-2150 MH-2150
343	PQP MR	PQP MR	10.694 0.245	465,843 10,677	4.456 0.102	20.833 0.188	66.955 0.666	62.499 0.564	MH-2174 MH-2150
344	MR	MR	0.150	6,518	0.063	0.188	0.627	0.564	MH-2138 MH-2262
	MR	MR	0.090	3,936	0.038	0.100		0.064	
344 345	MR MR	MR MR MR	0.090 0.102 0.127	3,936 4,461 5,543	0.038 0.043 0.053	0.188	0.607	0.564 0.564 0.564	MH-2262 MH-2262 MH-2262
344 345 346 347 348 349	MR MR MR MR	MR	0.102 0.127 0.152	4,461 5,543 6,628	0.043 0.053 0.063	0.188 0.188 0.188	0.607 0.617 0.627	0.564	MH-2262 MH-2262 MH-2262
344 345 346 347 348	MR MR MR	MR MR MR	0.102 0.127	4,461 5,543	0.043 0.053	0.188 0.188	0.607 0.617	0.564 0.564 0.564	MH-2262 MH-2262

		D 111 (1 1		utes of parcel_load	0			D. 11	
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
354 355	MR MR	MR MR	0.146 0.140	6,341 6,085	0.061 0.058	0.188 0.188	0.625 0.622	0.564 0.564	MH-2262 MH-2262
356	MR	MR	0.137	5,956	0.057	0.188	0.621	0.564	MH-2262
357 358	MR MR	MR MR	0.122 0.154	5,324 6,719	0.051 0.064	0.188 0.188	0.615 0.628	0.564 0.564	MH-2262 MH-2262
359 360	MR MR	MR MR	0.166 0.230	7,219 10,038	0.069	0.188 0.188	0.633 0.660	0.564 0.564	MH-2262 MH-2134
361 362	MR MR	MR MR	0.171 0.152	7,457 6,628	0.071	0.188 0.188	0.635 0.627	0.564 0.564	MH-2134 MH-2138
363 364	Vacant HR	PC HR	4.442 0.112	193,490 4,892	1.851 0.047	7.712 0.212	24.987 0.683	23.136 0.636	MH-1343 MH-2262
<u>365</u> 366	HR OF	HR OF	3.425 1.139	149,202 49,610	1.427 0.475	6.493 1.977	20.906 6.406	19.479 5.931	MH-30018 MH-30018
367	Vacant	OF	0.609	26,508	0.254	1.057	3.425	3.171	MH-2124
368 369	MR MR	MR MR	0.153 0.184	6,680 8,018	0.064 0.077	0.188 0.188	0.628 0.641	0.564 0.564	MH-2138 MH-2164
370 371	MR MR	MR MR	0.197 0.170	8,595 7,399	0.082	0.188 0.188	0.646 0.635	0.564 0.564	MH-2124 MH-2134
372 373	MR MR	MR MR	0.162 0.184	7,058 8,024	0.068	0.188 0.188	0.632 0.641	0.564 0.564	MH-2134 MH-2134
374 375	HR MR	HR MR	0.168 0.229	7,338 9,965	0.070 0.095	0.319 0.188	1.027 0.659	0.957 0.564	MH-2262 MH-2134
376 377	MR	MR MR	0.180	7,849	0.075	0.188	0.639	0.564	MH-2134 MH-2262
378	MR MR	MR MR	0.095	4,136	0.040	0.188	0.604	0.564	MH-2262
379 380	MR	MR	0.142 0.148	6,200 6,439	0.059	0.188 0.188	0.623 0.626	0.564 0.564	MH-2262 MH-2262
381 382	MR MR	MR MR	0.129 0.157	5,639 6,827	0.054 0.065	0.188 0.188	0.618 0.629	0.564 0.564	MH-2262 MH-2262
383 384	MR MR	MR MR	0.142 0.144	6,184 6,282	0.059	0.188 0.188	0.623 0.624	0.564 0.564	MH-2262 MH-2262
385 386	MR MR	MR MR	0.133 0.143	5,805 6,228	0.055 0.060	0.188 0.188	0.619 0.624	0.564 0.564	MH-2262 MH-2262
<u>387</u> 388	MR MR	MR MR	0.153 0.133	6,684 5,790	0.064	0.188	0.628	0.564	MH-2262 MH-2262 MH-2262
389 390	MR MR MR	MR MR MR	0.150 0.167	6,524 7,261	0.055 0.063 0.070	0.188	0.619 0.627 0.634	0.564 0.564	MH-2262 MH-2262 MH-2262
391	MR	MR	0.154	6,692	0.064	0.188	0.628	0.564	MH-2138
392 393	MR MR	MR MR	0.167	7,287 5,899	0.070	0.188	0.634	0.564	MH-2138 MH-2150
394 395	MR MR	MR MR	0.163 0.146	7,108 6,344	0.068 0.061	0.188 0.188	0.632 0.625	0.564 0.564	MH-2150 MH-2150
396 397	MR MR	MR MR	0.163 0.148	7,105 6,449	0.068 0.062	0.188 0.188	0.632 0.626	0.564 0.564	MH-2150 MH-2150
398 399	MR MR	MR MR	0.159 0.172	6,948 7,499	0.066	0.188 0.188	0.630 0.636	0.564 0.564	MH-2150 MH-2150
400 401	MR MR MR	MR MR	0.135 0.151	5,895 6,566	0.056	0.188	0.620	0.564 0.564	MH-2150 MH-2150 MH-2150
402 403	MR MR	MR MR	0.157 0.154	6,833 6,707	0.065	0.188	0.629	0.564	MH-2150
404	MR	MR	0.160	6,973	0.067	0.188	0.631	0.564	MH-2150 MH-2150
405 406	MR MR	MR MR	0.149 0.159	6,491 6,925	0.062 0.066	0.188 0.188	0.626 0.630	0.564 0.564	MH-2150 MH-2150
407 408	OF MR	OF MR	1.970 0.171	85,822 7,457	0.821	3.420 0.188	11.081 0.635	10.260 0.564	MH-2124 MH-2164
409 410	MR MR	MR MR	0.156 0.212	6,786 9,230	0.065	0.188 0.188	0.629 0.652	0.564 0.564	MH-2126 MH-2134
411 412	HR MR	HR MR	0.191 0.163	8,329 7,080	0.080	0.362 0.188	1.166 0.632	1.086 0.564	MH-2262 MH-2138
413 414	MR MR	MR MR	0.177 0.225	7,689 9,819	0.074 0.094	0.188 0.188	0.638 0.658	0.564 0.564	MH-2134 MH-2124
415 416	MR MR	MR MR	0.193 0.188	8,404 8,202	0.080	0.188	0.644	0.564	MH-2124 MH-2124 MH-2124
417	MR	MR PC	0.201	8,777	0.084	0.188	0.648	0.564	MH-2124
418 419	Vacant MR	MR	5.793 0.183	252,345 7,966	2.414	10.057 0.188	32.585 0.640	30.171 0.564	MH-1315 MH-2134
420 421	HR MR	HR MR	0.329 0.244	14,352 10,641	0.137 0.102	0.624 0.188	2.009 0.666	1.872 0.564	MH-2262 MH-2124
422 423	MR MR	MR MR	0.165 0.151	7,175 6,557	0.069	0.188 0.188	0.633 0.627	0.564 0.564	MH-2164 MH-2138
424 425	MR MR	MR MR	0.141 0.164	6,132 7,162	0.059 0.068	0.188 0.188	0.623 0.632	0.564 0.564	MH-2146 MH-2146
426 427	MR MR	MR MR	0.167 0.128	7,263 5,592	0.070 0.053	0.188 0.188	0.634 0.617	0.564 0.564	MH-2164 MH-2164
428 429	MR	MR MR	0.145	6,295	0.060	0.188	0.624	0.564	MH-2146
430	MR	MR MR MR	0.162	6,617 7,071 7,801	0.068	0.188	0.632	0.564	MH-2164 MH-2164
431 432	MR MR	MR	0.179 0.249	7,801 10,862	0.075	0.188	0.639 0.668	0.564	MH-2146 MH-2164
433 434	MR MR	MR MR	0.180 0.146	7,849 6,356	0.075 0.061	0.188 0.188	0.639 0.625	0.564 0.564	MH-2146 MH-2146
435 436	MR MR	MR MR	0.148 0.190	6,439 8,264	0.062 0.079	0.188 0.188	0.626 0.643	0.564 0.564	MH-2146 MH-2138
437 438	MHR MR	MHR MR	0.446 0.175	19,425 7,614	0.186 0.073	0.188 0.188	0.750 0.637	0.564 0.564	MH-2262 MH-2134
439 440	MR	MR MR	0.161	7,030 7,216	0.067	0.188	0.631 0.633	0.564	MH-2134 MH-2164
441 442	MR MR MR	MR MR	0.196	8,558 8,425	0.082	0.188	0.646	0.564	MH-2146 MH-2164
443	MR MR MHR	MR MR MHR	0.218	9,507	0.091	0.188	0.655	0.564	MH-2138 MH-2262
444 445	HR	HR	0.404	17,584 8,585	0.168	0.188	0.732	0.564	MH-2262
446 447	MR MR	MR MR	0.164 0.144	7,151 6,263	0.068	0.188	0.632	0.564 0.564	MH-2164 MH-2134
448 449	MR MR	MR MR	0.302 0.139	13,134 6,073	0.126 0.058	0.188 0.188	0.690 0.622	0.564 0.564	MH-2124 MH-2134
450 451	MR MR	MR MR	0.175 0.162	7,619 7,062	0.073 0.068	0.188 0.188	0.637 0.632	0.564 0.564	MH-2124 MH-2124
452 453	MR	MR MR	0.162	7,044 5,798	0.068	0.188	0.632	0.564	MH-2146 MH-2124
454 455	OF Vacant	OF OF	1.338 0.213	58,271 9,259	0.558	2.323 0.370	7.527	6.969 1.110	MH-30018 MH-2124
456	MR	MR	0.255	11,115	0.106	0.188	0.670	0.564	MH-2164
457 458	MR MR	MR MR	0.196 0.152	8,546 6,603	0.082	0.188	0.646	0.564	MH-2138 MH-2164
459 460	MR MR	MR MR	0.149 0.164	6,477 7,142	0.062 0.068	0.188 0.188	0.626 0.632	0.564 0.564	MH-2164 MH-2164
461 462	MR MR	MR MR	0.171 0.153	7,439 6,671	0.071 0.064	0.188 0.188	0.635 0.628	0.564 0.564	MH-2164 MH-2138
463 464	MR MR	MR MR	0.138 0.149	6,017 6,506	0.058	0.188 0.188	0.622 0.626	0.564 0.564	MH-2146 MH-2146
465 466	MR MR MR	MR MR	0.149	6,880 6,787	0.062	0.188	0.620	0.564 0.564	MH-2146 MH-2142 MH-2142
467	MR	MR	0.144	6,281	0.060	0.188	0.624	0.564	MH-2146
468 469	MR MR	MR MR	0.145 0.198	6,325 8,612	0.060	0.188	0.624	0.564	MH-2146 MH-2124
470	HR MR	HR MR	0.251 0.165	10,951 7,193	0.105	0.476 0.188	1.533 0.633	1.428 0.564	MH-2262 MH-2164

				·	ling_to_manhole.	· ·			
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
472 473	MR MHR	MR MHR	0.140 0.442	6,108 19,269	0.058 0.184	0.188 0.188	0.622 0.748	0.564 0.564	MH-2134 MH-2262
474 475	MR MR	MR MR	0.133 0.146	5,790 6,358	0.055	0.188	0.619	0.564	MH-2134 MH-2146
476 477	MR CBD	MR CBD	0.190	8,273 39,532	0.079	0.188	0.643	0.564	MH-2138 MH-1185
478	MR	MR	0.152	6,635	0.063	0.188	0.627	6.621 0.564	MH-2134
479 480	MR MR	MR MR	0.137 0.164	5,968 7,136	0.057 0.068	0.188 0.188	0.621 0.632	0.564 0.564	MH-2134 MH-2164
481 482	MR MR	MR MR	0.440 0.171	19,186 7,428	0.183	0.188 0.188	0.747 0.635	0.564 0.564	MH-2124 MH-2126
483 484	MR MR	MR MR	0.191 0.155	8,305 6,752	0.080 0.065	0.188 0.188	0.644 0.629	0.564 0.564	MH-1315 MH-2136
485 486	MR MR	MR MR	0.140	6,113 6,547	0.058	0.188	0.622	0.564	MH-2142 MH-2142
487	MR	MR	0.282	12,294	0.118	0.188	0.682	0.564	MH-2142
488 489	MR MR	MR MR	0.160 0.157	6,981 6,835	0.067	0.188	0.631	0.564 0.564	MH-2142 MH-2142
490 491	MR MR	MR MR	0.161 0.201	7,030 8,746	0.067 0.084	0.188 0.188	0.631 0.648	0.564 0.564	MH-2170 MH-2170
492 493	MR MR	MR MR	0.146	6,352 6,348	0.061	0.188 0.188	0.625 0.625	0.564 0.564	MH-2142 MH-2142
494 495	MR MR	MR MR	0.192 0.204	8,348 8,876	0.080 0.085	0.188 0.188	0.644 0.649	0.564 0.564	MH-2164 MH-2170
496 497	MR CBD	MR CBD	0.208	9,069 130,443	0.087	0.188	0.651	0.564	MH-2164 MH-30016
498	MR	MR	0.150	6,537	0.063	0.188	0.627	0.564	MH-2126
499 500	MR CBD	MR CBD	0.157 0.911	6,822 39,665	0.065 0.380	0.188 2.214	0.629 7.022	0.564 6.642	MH-2126 MH-2262
501 502	Vacant CBD	CBD CBD	2.730 2.193	118,931 95,527	1.138 0.914	6.635 5.330	21.043 16.904	19.905 15.990	MH-30016 MH-2124
503 504	MR MR	MR MR	0.219 0.163	9,541 7,083	0.091 0.068	0.188 0.188	0.655 0.632	0.564 0.564	MH-2138 MH-2134
505 506	MR CBD	MR CBD	0.149 0.844	6,497 36,771	0.062	0.188	0.626	0.564 6.153	MH-2134 MH-2134 MH-1185
507	MR	MR	0.179	7,780	0.075	0.188	0.639	0.564	MH-2164
508 509	MR Vacant	MR NC	0.140	6,093 28,744	0.058	0.188	0.622	0.564 3.438	MH-1315 MH-1315
510 511	MR MR	MR MR	0.110 0.189	4,772 8,223	0.046 0.079	0.188 0.188	0.610 0.643	0.564 0.564	MH-1315 MH-1259
512 513	MR Vacant	MR NC	0.110 0.634	4,804 27,618	0.046 0.264	0.188	0.610 3.567	0.564 3.303	MH-1315 MH-1315
514 515	MR MR	MR MR	0.154 0.123	6,727 5,371	0.064 0.051	0.188 0.188	0.628 0.615	0.564 0.564	MH-1315 MH-1315
516 517	MR MR	MR MR	0.148 0.112	6,442 4,899	0.062	0.188	0.610	0.564	MH-1315 MH-1315
517 518 519	MR MR MR	MR MR MR	0.112 0.272 0.277	4,899 11,837 12,063	0.113	0.188	0.677	0.564 0.564	MH-1315 MH-2124 MH-2124
520	MR	MR	0.273	11,909	0.114	0.188	0.678	0.564	MH-2126
521 522	MR MR	MR MR	0.637 0.717	27,769 31,230	0.265 0.299	0.188 0.188	0.829 0.863	0.564 0.564	MH-2126 MH-2134
523 524	MR MR	MR MR	0.531 0.166	23,117 7,219	0.221	0.188 0.188	0.785 0.633	0.564 0.564	MH-2134 MH-2138
525 526	MR MR	MR MR	0.123 0.114	5,360 4,986	0.051 0.048	0.188 0.188	0.615 0.612	0.564 0.564	MH-2136 MH-2142
527 528	MR MR	MR MR	0.120	5,236 5,020	0.050	0.188 0.188	0.614	0.564 0.564	MH-2142 MH-2142
529	MR	MR	0.125	5,455	0.052	0.188	0.616	0.564	MH-2142
530 531	MR MR	MR MR	0.145 0.222	6,324 9,655	0.060	0.188	0.624	0.564 0.564	MH-2142 MH-2142
532 533	MR MR	MR MR	0.203 0.204	8,855 8,885	0.085 0.085	0.188 0.188	0.649 0.649	0.564 0.564	MH-2170 MH-2170
534 535	MR MR	MR MR	0.198	8,612 9,674	0.083	0.188 0.188	0.647 0.657	0.564 0.564	MH-2164 MH-2164
536 537	PQP PQP	PQP PQP	3.263 9.795	142,119 426,666	1.360 4.082	1.249 3.751	5.107 15.335	3.747 11.253	MH-2172 MH-2174
538 539	MR Vacant	MR MR	0.196	8,528 150,283	0.082	0.188	0.646	0.564	MH-1259 MH-30252
540	MR	MR	0.155	6,755	0.065	0.188	0.629	0.564	MH-1315
541 542	MR NC	MR NC	0.211 0.076	9,191 3,308	0.088 0.032	0.188 0.132	0.652 0.428	0.564 0.396	MH-1259 MH-1315
543 544	MR MR	MR MR	0.148 0.145	6,441 6,317	0.062	0.188 0.188	0.626 0.624	0.564 0.564	MH-1315 MH-1315
545 546	CBD MR	CBD MR	1.035 0.178	45,103 7,767	0.431	2.516 0.188	7.979 0.638	7.548 0.564	MH-1183 MH-1183
547 548	MR CBD	MR CBD	0.185 1.258	8,071 54,796	0.077 0.524	0.188 3.058	0.641 9.698	0.564 9.174	MH-1315 MH-30016
549	CBD	CBD MR	0.616	26,854	0.257	1.497	4.748	4.491	MH-1185
550 551	MR MR	MR	0.156	6,813 7,438	0.065	0.188	0.629	0.564	MH-1315 MH-1183
552 553	MR MR	MR MR	0.164 0.166	7,139 7,220	0.068 0.069	0.188 0.188	0.632 0.633	0.564 0.564	MH-1259 MH-2136
554 555	MR MR	MR MR	0.117 0.109	5,082 4,746	0.049 0.045	0.188 0.188	0.613 0.609	0.564 0.564	MH-2136 MH-2136
556 557	MR MR	MR MR	0.121 0.111	5,261 4,826	0.050 0.046	0.188 0.188	0.614 0.610	0.564 0.564	MH-2136 MH-2136
558 559	MR MR	MR MR	0.114	4,986 6,039	0.048	0.188	0.612	0.564	MH-2136 MH-2136
560 561	MR MR MR	MR MR MR	0.148 0.144	6,431 6,279	0.062	0.188	0.622	0.564	MH-1315 MH-1315
562	MR	MR	0.193	8,425	0.080	0.188	0.644	0.564	MH-2170
563 564	MR MR	MR MR	0.200	8,710 8,628	0.083	0.188	0.647	0.564	MH-2170 MH-2164
565 566	MR MR	MR MR	0.207 0.193	9,001 8,423	0.086 0.080	0.188 0.188	0.650 0.644	0.564 0.564	MH-2164 MH-1183
567 568	MR MR	MR MR	0.218 0.193	9,507 8,388	0.091 0.080	0.188 0.188	0.655 0.644	0.564 0.564	MH-2142 MH-1277
569 570	Vacant MR	PQP MR	0.431 0.156	18,775 6,814	0.180 0.065	0.347 0.188	1.221 0.629	1.041 0.564	MH-1159 MH-1277
570 571 572	CBD MR	CBD	0.360	15,702 5,533	0.150	0.875	2.775 0.617	2.625 0.564	MH-1187 MH-1315
573	Vacant	CBD	1.458	63,505	0.608	3.544	11.240	10.632	MH-1185
574 575	MR MR	MR MR	0.176 0.152	7,666 6,635	0.073	0.188	0.637	0.564 0.564	MH-1183 MH-1315
576 577	MR MR	MR MR	0.150 0.143	6,520 6,237	0.063 0.060	0.188 0.188	0.627 0.624	0.564 0.564	MH-1259 MH-1315
578 579	MR MR	MR MR	0.148 0.168	6,441 7,331	0.062	0.188 0.188	0.626 0.634	0.564 0.564	MH-1315 MH-1183
580 581	MR Vacant	MR CBD	0.148	6,427 44,610	0.062	0.188	0.626	0.564 7.467	MH-1277 MH-1185
582	MR MR	MR MR	0.161	7,028	0.067	0.188	0.631	0.564	MH-1315
		IVIT	0.126	5,489	0.053	0.188	0.617	0.564	MH-1277
583 584	MR	MR	0.185	8,037	0.077	0.188	0.641	0.564	MH-1183
583						0.188 0.188 0.728 0.188	0.641 0.633 2.342 0.663	0.564 0.564 2.184 0.564	MH-1183 MH-2142 MH-2134 MH-2164

				outes of parcel_load	0				
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
590 591	Vacant MR	CBD MR	0.606 0.148	26,407 6,466	0.253 0.062	1.473 0.188	4.672 0.626	4.419 0.564	MH-30016 MH-1259
592 593	MR Vacant	MR PQP	0.190	8,282 69,904	0.079	0.188	0.643 84.003	0.564 83.334	MH-2124 MH-1159
594 595	MR MR	MR MR	0.196	8,518 6,951	0.082	0.188	0.646	0.564	MH-2142 MH-1315
596 597	MR MR	MR MR	0.143 0.108	6,237 4,688	0.060	0.188	0.624	0.564 0.564	MH-1315 MH-1315 MH-1315
598	MR	MR	0.146	6,345	0.061	0.188	0.625	0.564	MH-1259
599 600	CBD MR	CBD MR	0.299 0.156	13,044 6,815	0.125	0.727	2.306 0.629	2.181 0.564	MH-2124 MH-1183
601 602	PR MR	PR MR	1.947 0.159	84,813 6,915	0.811 0.066	0.270 0.188	1.081 0.630	0.270 0.564	MH-1277 MH-1277
603 604	MR MR	MR MR	0.144 0.147	6,288 6,412	0.060	0.188 0.188	0.624 0.625	0.564 0.564	MH-1277 MH-2136
605 606	MR MR	MR MR	0.133 0.126	5,782 5,500	0.055	0.188 0.188	0.619 0.617	0.564 0.564	MH-2136 MH-2136
607 608	MR MR	MR MR	0.118 0.132	5,121 5,771	0.049 0.055	0.188 0.188	0.613 0.619	0.564 0.564	MH-2136 MH-2136
609 610	MR MR	MR MR	0.122 0.122	5,311 5,329	0.051 0.051	0.188 0.188	0.615 0.615	0.564 0.564	MH-2136 MH-2136
611 612	MR	MR MR	0.130	5,650 5,147	0.054	0.188	0.618	0.564	MH-2136 MH-2136
612 613 614	MR MR	MR MR	0.126	5,469 10,265	0.053	0.188	0.617	0.564 0.564	MH-1315 MH-2170
615	MR	MR	0.274	11,920	0.114	0.188	0.678	0.564	MH-2142
616 617	MR MR	MR MR	0.140 0.105	6,091 4,573	0.058 0.044	0.188 0.188	0.622 0.608	0.564 0.564	MH-1259 MH-1315
618 619	MR MR	MR MR	0.146 0.204	6,359 8,901	0.061 0.085	0.188 0.188	0.625 0.649	0.564 0.564	MH-1183 MH-2164
620 621	MR MR	MR MR	0.153 0.104	6,656 4,533	0.064 0.043	0.188 0.188	0.628 0.607	0.564 0.564	MH-1315 MH-1315
622 623	MR MR	MR MR	0.154 0.141	6,723 6,154	0.064 0.059	0.188 0.188	0.628 0.623	0.564 0.564	MH-1259 MH-1259
624 625	MR MR	MR MR	0.219 0.192	9,540 8,378	0.091 0.080	0.188 0.188	0.655 0.644	0.564 0.564	MH-2142 MH-2124
626 627	MR MR	MR MR	0.244 0.168	10,632 7,333	0.102	0.188	0.666	0.564 0.564	MH-2164 MH-1315
628 629	MR MR	MR MR	0.150	6,551 6,425	0.063	0.188	0.627	0.564	MH-30002 MH-1357
630 631	MR CBD	MR CBD	0.122	5,317 49,506	0.051	0.188 0.188 2.764	0.615	0.564 8.292	MH-1277 MH-30016
632 633	MR MR	MR MR	0.144	49,506 6,269 4,326	0.060	0.188 0.188	0.624	0.564 0.564	MH-30016 MH-1259 MH-1315
634	MR	MR	0.212	9,229	0.041 0.088 1.014	0.188	0.652	0.564	MH-1183
635 636	Vacant MR	CBD MR	2.433 0.144	105,969 6,252	1.014 0.060	5.914 0.188	18.756 0.624	17.742 0.564	MH-1187 MH-30002
637 638	PQP MR	PQP MR	17.418 0.205	758,722 8,946	7.258 0.085	3.125 0.188	16.633 0.649	9.375 0.564	MH-2120 MH-1259
639 640	MR MR	MR MR	0.153 0.141	6,680 6,147	0.064 0.059	0.188 0.188	0.628 0.623	0.564 0.564	MH-1279 MH-1259
641 642	MR MR	MR MR	0.162 0.152	7,052 6,601	0.068	0.188 0.188	0.632 0.627	0.564 0.564	MH-1277 MH-30002
643 644	MR PQP	MR PQP	0.146 4.011	6,371 174,730	0.061	0.188 0.000	0.625 1.671	0.564	MH-1357 MH-30252
645 646	MR MR	MR MR	0.083 0.138	3,615 6,028	0.035 0.058	0.188 0.188	0.599 0.622	0.564 0.564	MH-1315 MH-1259
647 648	Vacant MR	CBD MR	1.916 0.220	83,481 9,597	0.798 0.092	4.657 0.188	14.769 0.656	13.971 0.564	MH-2120 MH-1259
649 650	Vacant PR	MR PR	2.728 1.413	118,843 61,553	1.137 0.589	5.251 0.196	16.890 0.785	15.753 0.196	MH-2142 MH-2164
651 652	MR	MR MR	0.130	5,664 6,069	0.054	0.188	0.618	0.564 0.564	MH-30000 MH-1259
653 654	MR MR MR	MR MR	0.154 0.101	6,693 4,402	0.064	0.188	0.628	0.564 0.564	MH-1200 MH-1279 MH-1315
655	MR	MR	0.160	6,969	0.067	0.188	0.631	0.564	MH-1259
656 657	MR MR	MR MR	0.141 0.148	6,124 6,434	0.059	0.188	0.623	0.564	MH-1259 MH-1357
658 659	MR MR	MR MR	0.079 0.147	3,449 6,415	0.033	0.188 0.188	0.597 0.625	0.564 0.564	MH-1277 MH-30000
660 661	HR MR	HR MR	3.465 0.208	150,919 9,065	1.444 0.087	6.569 0.188	21.151 0.651	19.707 0.564	MH-1183 MH-1259
662 663	MR MR	MR MR	0.094 0.149	4,107 6,508	0.039	0.188 0.188	0.603 0.626	0.564 0.564	MH-1277 MH-1279
664 665	MR MR	MR MR	0.146 0.148	6,342 6,465	0.061	0.188 0.188	0.625 0.626	0.564 0.564	MH-1357 MH-1279
666 667	MR MR	MR MR	0.180 0.176	7,829 7,649	0.075	0.188 0.188	0.639 0.637	0.564 0.564	MH-1279 MH-1259
668 669	MR MR	MR MR	0.148 0.140	6,431 6,095	0.062 0.058	0.188 0.188	0.626 0.622	0.564 0.564	MH-1357 MH-1279
670 671	MR PQP	MR PQP	0.150	6,529 45,592	0.063	0.188	0.627	0.564 7.635	MH-1259 MH-1205
672 673	MR MR	MR MR	0.152	6,610 5,409	0.063	0.188	0.627	0.564	MH-1200 MH-1279 MH-1357
674 675	MR MR MR	MR MR	0.124 0.192 0.152	8,345 6,610	0.080	0.188	0.644	0.564 0.564	MH-1285 MH-1279
676 677	MR MR	MR MR	0.150 0.146	6,524 6,345	0.063	0.188	0.627	0.564 0.564	MH-1259 MH-1259 MH-1259
678 679	MR MR	MR MR MR	0.140	5,725 6,622	0.055	0.188	0.623	0.564 0.564	MH-1259 MH-1279 MH-1259
679 680 681	MR MR PQP	MR MR PQP	0.152 0.150 0.406	6,622 6,555 17,675	0.063 0.169	0.188 0.188 0.987	0.627	0.564 0.564 2.961	MH-1279
682	MR MR	MR MR	0.117	5,104	0.049	0.188	3.130 0.613	0.564	MH-1189 MH-1279
683 684	MR	MR	0.147 0.172	6,403 7,479	0.061	0.188	0.625	0.564	MH-1259 MH-1259
685 686	MR MR	MR MR	0.134 0.150	5,817 6,517	0.056	0.188	0.620	0.564	MH-1279 MH-1259
687 688	MR MR	MR MR	0.152	6,607 4,406	0.063	0.188	0.627	0.564	MH-1259 MH-1279
689 690	MR MR	MR MR	0.164 0.128	7,166 5,593	0.068	0.188	0.632	0.564	MH-1259 MH-1279
691 692	Vacant MR	HR MR	1.884 0.168	82,076 7,338	0.785 0.070	7.065 0.188	21.980 0.634	21.195 0.564	MH-1207 MH-1259
693 694	MR CBD	MR CBD	0.110 0.226	4,784 9,864	0.046 0.094	0.188 0.549	0.610 1.741	0.564 1.647	MH-1259 MH-1193
695 696	MR MR	MR MR	0.162 0.150	7,067 6,540	0.068	0.188 0.188	0.632 0.627	0.564 0.564	MH-1279 MH-1259
697 698	MR MR	MR MR	0.131	5,712 6,977	0.055	0.188	0.619	0.564	MH-1279 MH-1279
<u>699</u> 700	MR CBD	MR CBD	0.156	6,813 16,957	0.065	0.188 0.945	0.629	0.564	MH-1279 MH-1205
700 701 702	CBD CBD MR	CBD MR	0.389	9,902 6,579	0.095	0.552	1.751 0.627	1.656 0.564	MH-1203 MH-1193 MH-1249
703	MR	MR	0.099	4,324	0.041	0.188	0.605	0.564	MH-1259
704 705 706	MR MR	MR MR	0.103 0.166 0.111	4,466 7,230	0.043 0.069	0.188	0.607	0.564	MH-1279 MH-1285
706 707	MR CBD	MR CBD	0.111 1.515	4,825 65,985	0.046	0.188 3.682	0.610 11.677	0.564 11.046	MH-1279 MH-1193

				utes of parcel_loac	0				
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
708	MR	MR	0.149	6,484	0.062	0.188	0.626	0.564	MH-1249
709 710	MR MR	MR MR	0.200	8,716 7,449	0.083	0.188 0.188	0.647 0.635	0.564 0.564	MH-1279 MH-1153
711 712	MR MR	MR MR	0.226	9,855 25,971	0.094	0.188 0.188	0.658 0.812	0.564 0.564	MH-1089 MH-1153
713 714	MR MR	MR MR	0.172 0.144	7,484 6,252	0.072	0.188 0.188	0.636 0.624	0.564 0.564	MH-1089 MH-1089
715	CBD	CBD	0.413	17,982	0.172	1.004	3.184	3.012	MH-1157
716 717	MR MR	MR MR	0.199 0.146	8,676 6,353	0.083	0.188 0.188	0.647 0.625	0.564 0.564	MH-1089 MH-1259
718 719	MR Vacant	MR MR	0.211 0.204	9,205 8,873	0.088	0.188	0.652 1.264	0.564 1.179	MH-1089 MH-2298
720	Vacant Vacant	MR MR	0.207	9,005 9,274	0.086	0.398	1.280	1.194	MH-2298 MH-2298
722	Vacant	MR	0.271	11,795	0.113	0.522	1.679	1.566	MH-2298
723 724	Vacant MR	MR MR	0.142 0.161	6,164 7,021	0.059	0.273 0.188	0.878 0.631	0.819 0.564	MH-2298 MH-1279
725 726	Vacant MR	MR MR	0.242	10,550 6,434	0.101	0.466	1.499 0.626	1.398 0.564	MH-2298 MH-1249
727	MR MR	MR MR	0.142	6,198	0.059	0.188	0.623	0.564	MH-1259
728 729	MR	MR	0.108 0.140	4,699 6,104	0.045 0.058	0.188 0.188	0.609 0.622	0.564 0.564	MH-1279 MH-1279
730 731	MR MR	MR MR	0.514 0.094	22,411 4,078	0.214 0.039	0.188 0.188	0.778 0.603	0.564 0.564	MH-2060 MH-1279
732 733	MR CBD	MR CBD	0.211 0.259	9,209 11,265	0.088	0.188 0.630	0.652 1.998	0.564 1.890	MH-1169 MH-1205
734 735	MR MR	MR MR	0.153 0.211	6,654 9,191	0.064 0.088	0.188	0.628 0.652	0.564 0.564	MH-1279 MH-1153
736	Vacant	MR	0.146	6,373	0.061	0.281	0.904	0.843	MH-2298
737 738	Vacant Vacant	MR MR	0.150 0.146	6,516 6,375	0.063 0.061	0.289 0.281	0.930 0.904	0.867 0.843	MH-2298 MH-2298
739 740	MR CBD	MR CBD	0.119 0.209	5,171 9,088	0.050 0.087	0.188 0.508	0.614 1.611	0.564 1.524	MH-1279 MH-1157
741 742	MR MR	MR MR	0.150	6,551 8,075	0.063	0.188	0.627	0.564 0.564	MH-1259 MH-1259
743	CBD	CBD	0.267	11,611	0.111	0.649	2.058	1.947	MH-1205
744 745	MR MR	MR MR	0.128 0.240	5,595 10,440	0.053 0.100	0.188 0.188	0.617 0.664	0.564 0.564	MH-1089 MH-1279
746 747	MR MR	MR MR	0.165 0.645	7,202 28,076	0.069 0.269	0.188 0.188	0.633 0.833	0.564 0.564	MH-1259 MH-1153
748 749	MR MR	MR MR	0.131 0.095	5,712 4,150	0.055	0.188	0.619 0.604	0.564 0.564	MH-1279 MH-1279
750 751	Vacant CBD	MR CBD	0.137	5,958	0.057	0.264	0.849	0.792	MH-2298
752	MR	MR	0.266 0.168	11,581 7,310	0.111 0.070	0.647	2.052 0.634	1.941 0.564	MH-1157 MH-1259
753 754	MR MR	MR MR	0.140 0.146	6,080 6,371	0.058 0.061	0.188 0.188	0.622 0.625	0.564 0.564	MH-1259 MH-1259
755 756	CBD MR	CBD MR	0.186 0.154	8,118 6,710	0.078 0.064	0.452 0.188	1.434 0.628	1.356 0.564	MH-1205 MH-1279
757 758	CBD MR	CBD MR	1.025 0.114	44,656 4,952	0.427	2.491 0.188	7.900 0.612	7.473 0.564	MH-1199 MH-1279
759	HR	HR	1.900	82,780	0.792	3.602	11.598	10.806	MH-1183
760 761	CBD MR	CBD MR	0.256	11,153 4,847	0.107	0.622 0.188	1.973 0.610	1.866 0.564	MH-1207 MH-1279
762 763	Vacant MR	MR MR	0.139 0.185	6,049 8,039	0.058	0.268 0.188	0.862 0.641	0.804 0.564	MH-2298 MH-1259
764 765	MR MR	MR MR	0.175 0.182	7,619 7,929	0.073	0.188 0.188	0.637 0.640	0.564 0.564	MH-1259 MH-1089
766	Vacant	MR	0.157	6,841	0.065	0.302	0.971	0.906	MH-2298
767 768	MR CBD	MR CBD	0.221 0.240	9,647 10,462	0.092	0.188 0.583	0.656 1.849	0.564 1.749	MH-1259 MH-1205
769 770	MR CBD	MR CBD	0.301 0.114	13,119 4,956	0.125	0.188 0.277	0.689 0.879	0.564 0.831	MH-2062 MH-1205
771 772	Vacant MR	MR MR	0.137 0.126	5,951 5,505	0.057 0.053	0.264 0.188	0.849 0.617	0.792 0.564	MH-2298 MH-1259
773	MR MR	MR	0.205	8,913	0.085	0.188	0.649	0.564	MH-1089
774 775	MR	MR MR	0.151 0.117	6,579 5,088	0.063 0.049	0.188 0.188	0.627 0.613	0.564 0.564	MH-1249 MH-1279
776 777	MR MR	MR MR	0.146 0.114	6,343 4,971	0.061	0.188 0.188	0.625 0.612	0.564 0.564	MH-1259 MH-1279
778 779	CBD MR	CBD MR	0.094 0.106	4,084 4,624	0.039	0.228	0.723 0.608	0.684 0.564	MH-1205 MH-1279
780 781	MR MR	MR MR	0.203 0.179	8,832 7,819	0.085	0.188 0.188	0.649 0.639	0.564 0.564	MH-1089 MH-1089
782	CBD	CBD	0.254	11,046	0.106	0.617	1.957	1.851	MH-1207
783 784	MR MR	MR MR	0.221 0.145	9,613 6,314	0.092 0.060	0.188 0.188	0.656 0.624	0.564 0.564	MH-1089 MH-1259
785 786	CBD MR	CBD MR	0.105 0.201	4,564 8,742	0.044 0.084	0.255 0.188	0.809 0.648	0.765 0.564	MH-1205 MH-1259
787 788	MR Vacant	MR MR	0.160	6,962 6,642	0.067	0.188	0.631	0.564	MH-1089 MH-2298
789	Vacant	MR	0.134	5,831	0.056	0.258	0.830	0.774	MH-2298
790 791	Vacant Vacant	MR MR	0.134	5,827 5,824	0.056	0.258	0.830 0.830	0.774	MH-2298 MH-2298
792 793	Vacant MR	MR MR	0.143	6,232 19,238	0.060 0.184	0.275 0.188	0.885 0.748	0.825 0.564	MH-2298 MH-1153
794 795	CBD Vacant	CBD CBD	0.233 0.993	10,151 43,269	0.097 0.414	0.566 2.414	1.795 7.656	1.698 7.242	MH-1155 MH-1207
796 797	CBD	CBD MR	0.186	8,115 18,173	0.078	0.452	1.434 0.738	1.356 0.564	MH-1205 MH-2062
798	MR	MR	0.107	4,650	0.045	0.188	0.609	0.564	MH-1285
799 800	MR MR	MR MR	0.112 0.143	4,894 6,211	0.047	0.188 0.188	0.611 0.624	0.564 0.564	MH-1279 MH-1259
801 802	Vacant Vacant	MR MR	0.153 0.140	6,668 6,097	0.064 0.058	0.295 0.269	0.949 0.865	0.885 0.807	MH-2298 MH-2298
803 804	Vacant MR	MR MR	0.138	6,000 7,961	0.058	0.266	0.856	0.798	MH-2298 MH-2060
805	MR	MR	0.164	7,139	0.068	0.188	0.632	0.564	MH-1259
806 807	MR MR	MR MR	0.149 0.146	6,503 6,339	0.062	0.188 0.188	0.626 0.625	0.564 0.564	MH-2094 MH-2094
808 809	MR MR	MR MR	0.146 0.139	6,376 6,035	0.061 0.058	0.188 0.188	0.625 0.622	0.564 0.564	MH-2094 MH-2094
810 811	MR MR	MR MR	0.161 0.154	7,026	0.067	0.188 0.188	0.631 0.628	0.564 0.564	MH-2094 MH-1249
812	CBD	CBD	0.192	8,359	0.080	0.467	1.481	1.401	MH-1205
813 814	MR MR	MR MR	0.146 0.143	6,374 6,240	0.061 0.060	0.188 0.188	0.625 0.624	0.564 0.564	MH-1089 MH-1259
815 816	MR Vacant	MR CBD	0.885 0.251	38,570 10,951	0.369 0.105	0.188 0.610	0.933 1.935	0.564 1.830	MH-1249 MH-1207
817 818	CBD	CBD CBD	0.247	10,750 6,871	0.103	0.600	1.903 1.218	1.800	MH-1161 MH-1207
819	MR	MR	0.177	7,717	0.074	0.188	0.638	0.564	MH-1259
820 821	MR MR	MR MR	0.151 0.061	6,561 2,648	0.063 0.025	0.188 0.188	0.627 0.589	0.564 0.564	MH-1279 MH-1089
822 823	MR CBD	MR CBD	0.149 0.144	6,478 6,285	0.062	0.188 0.350	0.626 1.110	0.564 1.050	MH-1089 MH-1207
023							· -		

	Existing Land	Buildout Land	Area	Area	 I/I	Buildout ADWF	Buildout PWWF	Buildout PDWF	
Parcel ID	Use	Use	(acres)	(ft ²)	(gpm)	(gpm)	(gpm)	(gpm)	Manhole
826 827	CBD Vacant	CBD MR	1.160 0.133	50,525 5,811	0.483 0.055	2.819 0.256	8.940 0.823	8.457 0.768	MH-1207 MH-2298
828 829	MR Vacant	MR MR	0.155 0.150	6,756 6,537	0.065	0.188 0.289	0.629	0.564 0.867	MH-1259 MH-2298
830 831	Vacant MR	MR MR	0.143 0.196	6,243 8,539	0.060	0.275 0.188	0.885 0.646	0.825 0.564	MH-2298 MH-2060
832 833	Vacant MR	MR MR	0.138 0.145	6,021 6,312	0.058 0.060	0.266 0.188	0.856 0.624	0.798 0.564	MH-2298 MH-1089
834 835	CBD	CBD MR	0.246	10,720 19,787	0.103	0.598	1.897 0.753	1.794 0.564	MH-1161 MH-1153
836	MR	MR	0.153	6,657	0.064	0.188	0.628	0.564	MH-1249
837 838	MR MR	MR MR	0.106 0.209	4,613 9,084	0.044 0.087	0.188 0.188	0.608 0.651	0.564 0.564	MH-1259 MH-1089
839 840	MR MR	MR MR	0.177 0.160	7,728 6,984	0.074 0.067	0.188 0.188	0.638 0.631	0.564 0.564	MH-1089 MH-1089
841 842	MR Vacant	MR MR	0.335	14,572 9,464	0.140	0.188 0.418	0.704	0.564 1.254	MH-1089 MH-2298
843 844	Vacant Vacant	MR MR	0.169 0.144	7,375 6,271	0.070 0.060	0.325 0.277	1.045 0.891	0.975 0.831	MH-2298 MH-2298
845 846	Vacant Vacant Vacant	MR MR	0.144	6,282 6,282	0.060	0.277	0.891	0.831	MH-2298 MH-2298
847	Vacant	MR	0.144	6,282	0.060	0.277	0.891	0.831	MH-2298
848 849	MR CBD	MR CBD	0.159 0.104	6,931 4,530	0.066 0.043	0.188 0.253	0.630 0.802	0.564 0.759	MH-1089 MH-1207
850 851	Vacant Vacant	MR MR	0.135	5,873 5,869	0.056	0.260	0.836 0.836	0.780 0.780	MH-2298 MH-2298
852 853	Vacant Vacant	MR MR	0.145 0.135	6,296 5,876	0.060 0.056	0.279 0.260	0.897 0.836	0.837 0.780	MH-2298 MH-2298
854 855	CBD	CBD MR	0.078	3,416 7,401	0.033	0.190	0.603	0.570	MH-1199 MH-1259
856	MR	MR	0.807	35,159	0.336	0.188	0.900	0.564	MH-2062
857 858	MR CBD	MR CBD	0.144 0.169	6,269 7,381	0.060	0.188	0.624	0.564	MH-1089 MH-1161
859 860	MR CBD	MR CBD	0.142 0.201	6,191 8,772	0.059 0.084	0.188 0.489	0.623 1.551	0.564 1.467	MH-1259 MH-1207
861 862	MHR MR	MHR MR	0.094 0.100	4,109 4,352	0.039 0.042	0.188 0.188	0.603 0.606	0.564 0.564	MH-1169 MH-1259
863 864	MR MR	MR MR	0.185	8,065 7,378	0.077	0.188	0.641	0.564 0.564	MH-1259 MH-2094
865 866	Vacant	MR MR	0.103	6,745 6,246	0.065	0.100	0.959	0.894 0.564	MH-2298 MH-2094
867	CBD	CBD	0.177	7,715	0.074	0.430	1.364	1.290	MH-1161
868 869	MR MR	MR MR	0.138 0.150	6,026 6,514	0.058	0.188	0.622	0.564 0.564	MH-2094 MH-2094
870 871	MR CBD	MR CBD	0.144 0.270	6,252 11,754	0.060 0.113	0.188 0.656	0.624 2.081	0.564 1.968	MH-2094 MH-1199
872 873	MR MR	MR MR	0.146	6,366 6,027	0.061	0.188 0.188	0.625 0.622	0.564 0.564	MH-2094 MH-2094
874 875	Vacant MR	MR MR	0.160	6,987 6,894	0.067	0.308	0.991 0.630	0.924 0.564	MH-2298 MH-2094
876 877	Vacant	MR MR	0.152	6,635	0.063	0.293	0.942	0.879	MH-2298
878	Vacant MR	MR	0.147 0.109	6,394 4,732	0.061 0.045	0.283 0.188	0.910 0.609	0.849 0.564	MH-2298 MH-1249
879 880	MR CBD	MR CBD	0.208 0.199	9,060 8,655	0.087	0.188 0.484	0.651 1.535	0.564 1.452	MH-2062 MH-1207
881 882	MHR MHR	MHR MHR	0.112 0.187	4,892 8,166	0.047	0.188 0.188	0.611 0.642	0.564 0.564	MH-1169 MH-1169
883 884	CBD MR	CBD MR	0.487 0.495	21,197 21,546	0.203 0.206	1.184 0.188	3.755 0.770	3.552 0.564	MH-1207 MH-1153
885 886	Vacant MR	MR MR	0.472	20,556 6,156	0.197	0.909	2.924 0.623	2.727 0.564	MH-1209 MH-1259
887	MR	MR MR	0.177	7,711	0.074	0.188	0.638	0.564	MH-1259
888 889	MR CBD	CBD	0.158 0.742	6,867 32,301	0.066 0.309	0.188 1.803	0.630 5.718	0.564 5.409	MH-1089 MH-1215
890 891	MR MR	MR MR	0.104 0.174	4,533 7,561	0.043	0.188 0.188	0.607 0.637	0.564 0.564	MH-1249 MH-1259
892 893	Vacant MHR	MR MHR	0.150 0.147	6,518 6,418	0.063	0.289 0.188	0.930 0.625	0.867 0.564	MH-2298 MH-1169
894 895	CBD CBD	CBD CBD	0.141 0.384	6,123 16,742	0.059	0.343 0.933	1.088 2.959	1.029 2.799	MH-1207 MH-1207
896 897	HR CBD	HR CBD	0.217 0.155	9,455 6,750	0.090	0.411	1.323 1.196	1.233 1.131	MH-1161
898	MR	MR	0.462	20,123	0.193	0.188	0.757	0.564	MH-1161 MH-2062
899 900	MHR MR	MHR MR	0.164 0.144	7,141 6,293	0.068 0.060	0.188 0.188	0.632 0.624	0.564 0.564	MH-1169 MH-1249
901 902	MR MR	MR MR	0.158 0.143	6,879 6,237	0.066	0.188 0.188	0.630 0.624	0.564 0.564	MH-1089 MH-1259
903 904	MHR MHR	MHR MHR	0.181 0.080	7,891 3,486	0.075 0.033	0.188 0.188	0.639 0.597	0.564 0.564	MH-1175 MH-1169
905 906	MR CBD	MR CBD	0.149	6,501 12,140	0.062	0.188	0.626	0.564	MH-1089 MH-1207
907	MR	MR	0.136	5,909	0.057	0.188	0.621	0.564	MH-1089
908 909	MR MR	MR MR	0.439	19,137 6,749	0.183	0.188	0.747 0.629	0.564	MH-1209 MH-1249
910 911	MR CBD	MR CBD	0.151 0.861	6,587 37,488	0.063 0.359	0.188 2.093	0.627 6.638	0.564 6.279	MH-2094 MH-1201
912 913	MR MR	MR MR	0.317 0.550	13,790 23,976	0.132 0.229	0.188 0.188	0.696 0.793	0.564 0.564	MH-2062 MH-1153
914 915	MHR MR	MHR MR	0.124 0.162	5,386 7,053	0.052	0.188	0.616	0.564 0.564	MH-1175 MH-1249
916 917	MR Vacant	MR MR	0.160	6,987 6,710	0.067	0.188	0.631	0.564 0.888	MH-1089 MH-2298
918	MR	MR	0.295	12,833	0.123	0.188	0.687	0.564	MH-2094
919 920	MR MHR	MR MHR	0.162	7,041 3,634	0.068	0.188	0.632	0.564	MH-1089 MH-1169
921 922	HR Vacant	HR MR	0.158 0.178	6,891 7,743	0.066 0.074	0.300 0.343	0.966 1.103	0.900 1.029	MH-1149 MH-2298
923 924	Vacant Vacant	MR MR	0.146 0.146	6,359 6,359	0.061 0.061	0.281 0.281	0.904 0.904	0.843 0.843	MH-2298 MH-2298
925 926	Vacant Vacant	MR MR	0.155	6,765 6,509	0.065	0.298	0.959	0.894	MH-2298 MH-2298
920 927 928	Vacant Vacant MR	MR MR MR	0.149 0.142 0.210	6,177 9,145	0.059	0.287 0.273 0.188	0.878	0.801 0.819 0.564	MH-2298 MH-2298 MH-2062
929	CBD	CBD	0.153	6,683	0.064	0.372	1.180	1.116	MH-1215
930 931	MHR MR	MHR MR	0.134 0.145	5,820 6,333	0.056 0.060	0.188 0.188	0.620 0.624	0.564 0.564	MH-1171 MH-1249
932 933	MR MR	MR MR	0.244 0.156	10,621 6,795	0.102 0.065	0.188 0.188	0.666 0.629	0.564 0.564	MH-1259 MH-1089
934 935	Vacant Vacant	MR MR	0.145 0.141	6,323 6,162	0.060	0.279	0.897	0.837	MH-2298 MH-2298
936	MR	MR MR	0.170	7,405	0.071	0.327	1.052	0.981	MH-2298
937 938	MR MR	MR	0.159 0.159	6,942 6,933	0.066	0.306	0.984	0.918 0.564	MH-2298 MH-1089
	MHR	MHR	0.109	4,763	0.045	0.188	0.609	0.564	MH-1175
939 940 941	HR MHR	HR MHR	0.329 0.191	14,322 8,339	0.137 0.080	0.624 0.188	2.009 0.644	1.872 0.564	MH-1149 MH-1171

	Existing Land	Buildout Land	Attribu	Area	ling_to_manhole.	.snp Buildout ADWF	Buildout PWWF	Buildout PDWF	
Parcel ID	Use	Use	(acres)	(ft ²)	(gpm)	(gpm)	(gpm)	(gpm)	Manhole
944 945	MR MR	MR MR	0.150 0.242	6,555 10,546	0.063	0.188	0.627 0.665	0.564 0.564	MH-1089 MH-2062
946 947	MR CBD	MR CBD	0.190 0.166	8,296 7,211	0.079	0.188	0.643	0.564	MH-1089 MH-1207
948 949	MR MR	MR MR	0.171 0.144	7,441 6,262	0.071 0.060	0.188 0.188	0.635 0.624	0.564 0.564	MH-2094 MH-2094
950 951	MHR MR	MHR MR	0.078 0.141	3,402 6,146	0.033 0.059	0.188 0.188	0.597 0.623	0.564 0.564	MH-1169 MH-2094
952 953	MHR MR	MHR MR	0.091 0.149	3,974 6,479	0.038	0.188 0.188	0.602 0.626	0.564 0.564	MH-1175 MH-2094
954 955	MR MR	MR MR	0.138 0.141	6,004 6,147	0.058	0.188 0.188	0.622 0.623	0.564 0.564	MH-2094 MH-2094
956 957	MR MR	MR MR	0.147 0.183	6,394 7,958	0.061	0.188 0.188	0.625 0.640	0.564 0.564	MH-2094 MH-2094
958 959	MR MHR	MR MHR	0.168 0.131	7,307 5,696	0.070 0.055	0.188 0.188	0.634 0.619	0.564 0.564	MH-2094 MH-1175
960 961	MR MR	MR MR	0.140 0.166	6,108 7,241	0.058 0.069	0.188 0.188	0.622 0.633	0.564 0.564	MH-2094 MH-1089
962 963	CBD MHR	CBD MHR	0.252 0.088	10,988 3,813	0.105 0.037	0.613 0.188	1.944 0.601	1.839 0.564	MH-1209 MH-1175
964 965	Vacant CBD	MR CBD	0.154 0.172	6,710 7,498	0.064 0.072	0.296 0.418	0.952 1.326	0.888 1.254	MH-2298 MH-1207
966 967	MR MHR	MR MHR	0.235 0.127	10,242 5,517	0.098 0.053	0.188 0.188	0.662 0.617	0.564 0.564	MH-1249 MH-1171
968 969	Vacant CBD	HR CBD	0.230 0.214	10,027 9,306	0.096 0.089	0.863 0.520	2.685 1.649	2.589 1.560	MH-1149 MH-1215
970 971	Vacant Vacant	MR MR	0.150	6,518 5,778	0.063	0.289	0.930 0.823	0.867	MH-2298 MH-2298
972 973	MR MHR	MR MHR	0.140	6,118 5,764	0.058	0.188	0.622	0.564	MH-1089 MH-1175
974 975	CBD	CBD	0.294 0.210	12,803 9,129	0.123	0.715	2.268 0.652	2.145 0.564	MH-1199 MH-1153
976 977	Vacant	MR MR	0.137	5,950 5,781	0.057	0.168	0.849	0.792	MH-2298 MH-2298
978 979	LR MR	LR MR	0.133	6,460 6,600	0.062	0.219	0.823	0.657	MH-1215 MH-1089
980 981	MR MR MR	MR MR MR	0.132	6,468 6,076	0.063	0.188	0.917	0.855 0.804	MH-1089 MH-2298 MH-2298
981 982 983	CBD MHR	CBD MHR	0.139 0.816 0.096	35,527 4,180	0.038	0.288 1.983 0.188	6.289 0.604	0.804 5.949 0.564	MH-1207 MH-1175
983 984 985	MR LR	MR LR	0.096 0.142 0.257	4,180 6,188 11,187	0.040 0.059 0.107	0.188 0.188 0.219	0.604 0.623 0.764	0.564 0.564 0.657	MH-1175 MH-1089 MH-1137
985 986 987	LR MR MR	LR MR MR	0.257 0.151 0.102	6,558	0.107 0.063 0.043	0.219 0.188 0.188	0.764 0.627 0.607	0.657 0.564 0.564	MH-1137 MH-2094 MH-1209
988	Vacant	MR	0.162	4,449 7,076	0.068	0.312	1.004	0.936	MH-2298
989 990	Vacant MR	MR MR MR	0.215 0.189 0.186	9,363 8,245	0.090	0.414	1.332 0.643	1.242 0.564 1.074	MH-2298 MH-1097 MH-2298
991 992	Vacant CBD	CBD	0.186	8,118 8,458	0.078	0.358	1.152 1.497	1.074 1.416	MH-1245
993 994	MR Vacant	MR MR	0.144 0.154	6,278 6,710	0.060	0.188	0.624 0.952	0.564	MH-1089 MH-2298
995 996	MR MR	MR MR	0.186	8,106 36,040	0.078	0.188	0.642	0.564	MH-1089 MH-2016
997 998	CBD MHR	CBD MHR	0.126	5,470 4,448	0.053 0.043	0.306 0.188	0.971 0.607	0.918 0.564	MH-1215 MH-1175
999 1000	LR Vacant	LR MR	0.262 0.121	11,423 5,278	0.109 0.050	0.219 0.233	0.766 0.749	0.657 0.699	MH-1137 MH-2298
1001 1002	MR MR	MR MR	0.345 0.196	15,011 8,539	0.144 0.082	0.188 0.188	0.708 0.646	0.564 0.564	MH-1089 MH-1097
1003 1004	CBD Vacant	CBD MR	0.122 0.152	5,317 6,601	0.051 0.063	0.297 0.293	0.942 0.942	0.891 0.879	MH-1245 MH-2298
1005 1006	MR MR	MR MR	0.171 0.199	7,463 8,652	0.071 0.083	0.188 0.188	0.635 0.647	0.564 0.564	MH-2094 MH-2094
1007 1008	MR MR	MR MR	0.176 0.176	7,675 7,671	0.073	0.188 0.188	0.637 0.637	0.564 0.564	MH-2094 MH-2094
1009 1010	MR MR	MR MR	0.177 0.142	7,695 6,180	0.074 0.059	0.188 0.188	0.638 0.623	0.564 0.564	MH-2094 MH-2094
1011 1012	MR MR	MR MR	0.141 0.162	6,129 7,047	0.059	0.188 0.188	0.623 0.632	0.564 0.564	MH-2094 MH-1089
1013 1014	MR MHR	MR MHR	0.147 0.092	6,404 3,997	0.061 0.038	0.188 0.188	0.625 0.602	0.564 0.564	MH-2094 MH-1171
1015 1016	Vacant MR	MR MR	0.139 0.137	6,072 5,963	0.058	0.268 0.188	0.862 0.621	0.804 0.564	MH-2298 MH-2094
1017 1018	MR HR	MR HR	0.133 0.178	5,779 7,737	0.055 0.074	0.256 0.337	0.823 1.085	0.768 1.011	MH-2298 MH-1149
1019 1020	MR MR	MR MR	0.141 0.354	6,124 15,424	0.059 0.148	0.188 0.188	0.623 0.712	0.564 0.564	MH-2094 MH-2062
1021 1022	MR MR	MR MR	0.145 0.105	6,316 4,588	0.060	0.188 0.188	0.624 0.608	0.564 0.564	MH-2094 MH-1209
1023 1024	MR	MR MR	0.166	7,222 6,473	0.069	0.188	0.633	0.564	MH-2094 MH-2298
1025 1026	MR CBD	MR CBD	0.139 0.132	6,070 5,765	0.058	0.268	0.862	0.804 0.963	MH-2298 MH-1215
1027 1028	HR CBD	HR CBD	0.464 0.282	20,215 12,304	0.193	0.880	2.833 2.173	2.640 2.055	MH-1149 MH-1245
1020 1029 1030	MR MHR	MR MHR	0.202	8,808 5,701	0.084	0.188	0.648	0.564	MH-2094 MH-1175
1030 1031 1032	Vacant	MR MR	0.131 0.149 0.256	6,500 11,149	0.055 0.062 0.107	0.188	0.923	0.861	MH-2298 MH-2298
1032 1033 1034	MHR	MR MHR MR	0.236	8,547 7,388	0.082	0.188	0.646	0.564	MH-1175 MH-1097
1034 1035 1036	LR MHR	LR MHR	0.170	7,388 7,202 5,974	0.069	0.188	0.635	0.564	MH-1097 MH-1137 MH-1175
1036 1037 1038	CBD	CBD MR	0.137 0.107 0.156	4,645 6,797	0.045	0.188	0.825	0.564	MH-1175 MH-1215 MH-2094
1038 1039 1040	Vacant MR	MR MR MR	0.154 0.212	6,797 6,710 9,220	0.065 0.064 0.088	0.188	0.829 0.952 0.652	0.564	MH-2094 MH-2298 MH-1209
1040 1041 1042	MHR CBD	MHR CBD	0.086	3,740 3,870	0.036	0.188	0.600	0.564 0.648	MH-1209 MH-1171 MH-1201
1042 1043 1044	MHR	MHR MR	0.103	4,486 6,587	0.037	0.188	0.607	0.564 0.564	MH-1201 MH-1175 MH-2016
1045	LR	LR MR	0.094	4,106	0.039	0.219	0.696	0.657	MH-1137
1046 1047	Vacant CBD	CBD	0.136 0.158 0.155	5,930 6,883	0.057	0.262	0.843	0.786	MH-2298 MH-1215
1048 1049	Vacant CBD	MR CBD	0.155	6,760 7,907	0.065	0.298	0.959	0.894	MH-2298 MH-1217
1050 1051	CBD MHR	CBD MHR	0.948	41,316 7,802	0.395	2.304 0.188	7.307 0.639	6.912 0.564	MH-1245 MH-1171
1052 1053	LR MR	LR MR	0.151 0.352	6,560 15,342	0.063	0.219	0.720	0.657 0.564	MH-1137 MH-2064
1054 1055	MR Vacant	MR MR	0.155 0.130	6,773 5,682	0.065	0.188	0.629 0.804	0.564 0.750	MH-1089 MH-2298
1056 1057	MR MR	MR MR	0.160 0.152	6,986 6,611	0.067 0.063	0.188 0.293	0.631 0.942	0.564 0.879	MH-1089 MH-2298
1058 1059	MR MR	MR MR	0.153 0.133	6,675 5,806	0.064 0.055	0.295 0.256	0.949 0.823	0.885 0.768	MH-2298 MH-2298
1060	MHR LR	MHR LR	0.071 0.096	3,092 4,174	0.030 0.040	0.188 0.219	0.594 0.697	0.564 0.657	MH-1175 MH-1137

				utes of parcel_load	0				
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1062	MHR	MHR	0.119	5,171	0.050	0.188	0.614	0.564	MH-1175
1063 1064	CBD CBD	CBD CBD	0.155 0.086	6,746 3,745	0.065	0.377 0.209	1.196 0.663	1.131 0.627	MH-1217 MH-1245
1065 1066	MHR MR	MHR MR	0.085 0.147	3,716 6,420	0.035 0.061	0.188 0.188	0.599 0.625	0.564 0.564	MH-1171 MH-1089
1067 1068	Vacant CBD	MR CBD	0.161 0.070	7,000 3,052	0.067	0.310 0.170	0.997 0.539	0.930 0.510	MH-2298 MH-1215
1069 1070	CBD MHR	CBD MHR	0.512 0.398	22,303 17,318	0.213 0.166	1.244 0.188	3.945 0.730	3.732 0.564	MH-1245 MH-1171
1071 1072	HR Vacant	HR MR	0.206	8,981 2,310	0.086	0.391	1.259 0.328	1.173 0.306	MH-1149 MH-2298
1073	HR	HR	0.341	14,871	0.142	0.646	2.080	1.938	MH-1097
1074 1075	MHR Vacant	MHR MR	0.120 0.139	5,236 6,059	0.050 0.058	0.188 0.268	0.614 0.862	0.564 0.804	MH-1175 MH-2298
1076 1077	MHR CBD	MHR CBD	0.070 0.226	3,032 9,838	0.029	0.188 0.549	0.593 1.741	0.564 1.647	MH-1175 MH-1217
1078 1079	MR Vacant	MR MR	0.158 0.155	6,878 6,735	0.066	0.188 0.298	0.630 0.959	0.564 0.894	MH-1089 MH-2298
1080 1081	MR MHR	MR MHR	0.206 0.217	8,954 9,442	0.086 0.090	0.188 0.188	0.650 0.654	0.564 0.564	MH-1209 MH-1171
1082 1083	MHR Vacant	MHR MR	0.111 0.139	4,837 6,036	0.046	0.188	0.610	0.564 0.804	MH-1171 MH-2298
1085 1085	Vacant CBD	MR CBD	6.280 0.134	273,536 5,834	2.617	12.089 0.326	<u>38.884</u> 1.034	36.267 0.978	MH-2298 MH-1215
1086	MR	MR	0.175	7,627	0.073	0.188	0.637	0.564	MH-1089
1087 1088	MR Vacant	MR MR	0.258 0.189	11,244 8,232	0.108 0.079	0.188 0.364	0.672	0.564 1.092	MH-2064 MH-2298
1089 1090	MR LR	MR LR	0.219 0.192	9,545 8,382	0.091	0.188 0.219	0.655 0.737	0.564 0.657	MH-1089 MH-1137
1091 1092	MR MR	MR MR	0.350 0.146	15,265 6,358	0.146 0.061	0.188 0.281	0.710 0.904	0.564 0.843	MH-2016 MH-2298
1092 1093 1094	MHR MR	MHR MR	0.140	4,787 7,076	0.046	0.188	0.610	0.564 0.564	MH-1181 MH-1089
1095	CBD	CBD	0.860	37,445	0.358	2.090	6.628	6.270	MH-30114
1096 1097	Vacant MHR	MR MHR	0.134 0.057	5,816 2,500	0.056	0.258	0.830 0.588	0.774 0.564	MH-2298 MH-1175
1098 1099	CBD MR	CBD MR	0.325 0.154	14,167 6,727	0.135 0.064	0.790 0.296	2.505 0.952	2.370 0.888	MH-1209 MH-2298
1100 1101	CBD Vacant	CBD MR	0.219 0.138	9,549 6,000	0.091 0.058	0.532 0.266	1.687 0.856	1.596 0.798	MH-1217 MH-2298
1102 1103	MR	MR LR	0.209	9,095 19,456	0.087	0.188	0.651	0.564	MH-2028 MH-1215
<u>1103</u> <u>1104</u> 1105	HR MR	HR MR	0.447 0.170 0.258	7,388	0.188	0.322	0.843 1.037 0.672	0.966 0.564	MH-1213 MH-1097 MH-2028
1106	LR	LR	0.226	9,844	0.094	0.219	0.751	0.657	MH-1137
1107 1108	Vacant MHR	MR MHR	0.156 0.342	6,815 14,903	0.065	0.300	0.965	0.900 0.564	MH-2298 MH-1181
<u>1109</u> 1110	MR MR	MR MR	0.175 0.159	7,604 6,938	0.073	0.188 0.188	0.637 0.630	0.564 0.564	MH-1081 MH-1089
1111 1112	Vacant MR	MR MR	0.157 0.184	6,817 8,028	0.065	0.302	0.971 0.641	0.906 0.564	MH-2298 MH-2094
1113 1114	MR MR	MR MR	0.163 0.152	7,102 6,626	0.068 0.063	0.188 0.188	0.632 0.627	0.564 0.564	MH-2094 MH-2094
1115 1116	MR MR	MR MR	0.144 0.154	6,267 6,692	0.060	0.188	0.624	0.564	MH-2094 MH-2094
1117	MR	MR	0.157	6,832	0.065	0.188	0.629	0.564	MH-2094
<u>1118</u> 1119	MR HR	MR HR	0.148 0.171	6,429 7,469	0.062	0.188 0.324	0.626 1.043	0.564 0.972	MH-2094 MH-1097
1120 1121	MR MR	MR MR	0.163 0.147	7,098 6,386	0.068	0.188 0.188	0.632 0.625	0.564 0.564	MH-2094 MH-2094
1122 1123	MR MR	MR MR	0.151 0.157	6,577 6,833	0.063	0.188 0.188	0.627 0.629	0.564 0.564	MH-2094 MH-2094
1124 1125	MR Vacant	MR MR	0.158 0.147	6,893 6,382	0.066 0.061	0.188 0.283	0.630 0.910	0.564 0.849	MH-2094 MH-2298
1126 1127	MR	MR MR	0.141 0.158	6,148 6,897	0.059	0.188	0.623	0.564	MH-2094 MH-2094
1128	MR CBD	MR CBD	0.152	6,636 14,409	0.063	0.188	0.627	0.564	MH-2094
1129 1130	MR	MR	0.331 0.304	13,229	0.138	0.805	2.553 0.691	2.415 0.564	MH-1217 MH-1089
1131 1132	MR MR	MR MR	0.155 0.153	6,751 6,646	0.065 0.064	0.188 0.188	0.629 0.628	0.564 0.564	MH-2094 MH-2094
1133 1134	MR MR	MR MR	0.166 0.177	7,216 7,725	0.069	0.188 0.188	0.633 0.638	0.564 0.564	MH-2094 MH-2094
1135 1136	MR MR	MR MR	0.217 0.165	9,437 7,184	0.090	0.188 0.188	0.654 0.633	0.564 0.564	MH-2094 MH-2094
1137 1138	MR MR	MR MR	0.278	12,115 10,754	0.116	0.188	0.680	0.564	MH-2028 MH-2028
1139	MR	MR MR MR	0.252	10,996	0.105	0.188	0.669	0.564	MH-2028
<u>1140</u> 1141	MR MR	MR	0.183 0.320	7,987 13,944	0.076	0.188	0.640	0.564	MH-2028 MH-1163
1142 1143	LR MR	LR MR	0.164 0.151	7,140 6,569	0.068 0.063	0.219 0.291	0.725 0.936	0.657 0.873	MH-1137 MH-2298
1144 1145	MR Vacant	MR MR	0.298 0.145	12,979 6,307	0.124 0.060	0.574 0.279	1.846 0.897	1.722 0.837	MH-2016 MH-2298
1146 1147	MR MR	MR MR	0.140 0.139	6,113 6,038	0.058 0.058	0.269 0.188	0.865 0.622	0.807 0.564	MH-2298 MH-1081
1148 1149	CBD MR	CBD MR	0.130	5,642 8,389	0.054	0.316	1.002	0.948	MH-1245 MH-2298
1150 1151	MR LR	MR LR	0.193	11,406 7,228	0.109	0.188	0.673	0.564	MH-2028 MH-1137
1152	Vacant	MR	0.152	6,600	0.063	0.293	0.942	0.879	MH-2298
1153 1154	CBD LR	CBD LR	0.196	8,524 5,911	0.082	0.476	1.510 0.714	1.428 0.657	MH-1245 MH-1215
1155 1156	MR LR	MR LR	0.140 0.202	6,102 8,813	0.058 0.084	0.188 0.219	0.622	0.564 0.657	MH-1081 MH-1097
1157 1158	CBD LR	CBD LR	0.309 0.424	13,447 18,474	0.129 0.177	0.751 0.219	2.382 0.834	2.253 0.657	MH-1201 MH-1079
1159 1160	Vacant CBD	MR CBD	0.140 0.210	6,089 9,126	0.058	0.269 0.510	0.865 1.618	0.807 1.530	MH-2298 MH-1163
1161 1162	Vacant LR	MR LR	0.152	6,600 8,599	0.063	0.293	0.942	0.879	MH-2298 MH-1137
1162 1163 1164	MR MR	MR MR	0.197 0.215 0.139	9,354 6,067	0.082 0.090 0.058	0.219	1.332 0.862	0.804 0.804	MH-2298 MH-2298
1165	MR	MR	0.142	6,177	0.059	0.188	0.623	0.564	MH-1081
1166 1167	LR CBD	LR CBD	0.266 0.176	11,568 7,688	0.111 0.073	0.219 0.428	0.768 1.357	0.657 1.284	MH-1091 MH-1245
1168 1169	MR LR	MR LR	0.162 0.264	7,060 11,484	0.068 0.110	0.188 0.219	0.632 0.767	0.564 0.657	MH-2028 MH-1217
	MR CBD	MR CBD	0.150 0.239	6,528 10,416	0.063 0.100	0.289 0.581	0.930 1.843	0.867 1.743	MH-2298 MH-1163
1170 1171	CBD			6,600	0.063	0.293	0.942	0.879	MH-2298
1170 1171 1172	Vacant	MR MR	0.152						
1170 1171 1172 1173 1174	Vacant MR LR	MR LR	0.149 0.116	6,497 5,070	0.062 0.048	0.188 0.219	0.626 0.705	0.564 0.657	MH-1081 MH-1137
1170 1171 1172 1173	Vacant MR	MR	0.149	6,497	0.062	0.188	0.626	0.564	MH-1081

				utes of parcel_load	0				
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1180	MR	MR	0.158	6,884	0.066	0.188	0.630	0.564	MH-2092
1181 1182	MR MR	MR MR	0.145 0.140	6,333 6,095	0.060 0.058	0.188 0.188	0.624 0.622	0.564 0.564	MH-2092 MH-2092
<u>1183</u> 1184	MR Vacant	MR MR	0.147 0.139	6,409 6,075	0.061	0.188 0.268	0.625 0.862	0.564 0.804	MH-2092 MH-2298
1185 1186	MR MR	MR MR	0.152 0.143	6,605 6,223	0.063	0.188 0.188	0.627 0.624	0.564 0.564	MH-2092 MH-2092
1187 1188	Vacant MR	MR MR	0.152	6,600 6,872	0.063	0.293	0.942	0.879	MH-2298 MH-2092
1189	MR	MR	0.142	6,195	0.059	0.188	0.623	0.564	MH-2090
1190 1191	MR MR	MR MR	0.147 0.154	6,387 6,695	0.061 0.064	0.188 0.188	0.625 0.628	0.564 0.564	MH-2090 MH-2090
1192 1193	MR MR	MR MR	0.153 0.139	6,656 6,044	0.064	0.188 0.188	0.628 0.622	0.564 0.564	MH-2090 MH-2090
1194 1195	MR MR	MR MR	0.153 0.145	6,674 6,307	0.064 0.060	0.188 0.188	0.628 0.624	0.564 0.564	MH-2090 MH-2090
1196 1197	MR MR	MR MR	0.153	6,649 5,822	0.064	0.188	0.628	0.564 0.564	MH-2090 MH-2088
1198	MR	MR	0.194	8,463	0.081	0.188	0.645	0.564	MH-2088
1199 1200	MR CBD	MR CBD	0.184 0.149	8,001 6,498	0.077	0.188 0.362	0.641 1.148	0.564 1.086	MH-2088 MH-1217
1201 1202	LR MR	LR MR	0.137 0.134	5,979 5,822	0.057	0.219 0.188	0.714 0.620	0.657 0.564	MH-1145 MH-1081
1203 1204	MR MR	MR MR	0.144 0.180	6,274 7,835	0.060	0.277 0.188	0.891 0.639	0.831 0.564	MH-2298 MH-2028
1205 1206	MR CBD	MR CBD	0.245 0.246	10,676 10,736	0.102 0.103	0.472 0.598	1.518 1.897	1.416 1.794	MH-2298 MH-1163
1207 1208	MR LR	MR LR	0.298	12,973 14,179	0.124	0.188	0.688	0.564	MH-2016 MH-1093
1209	Vacant	MR	0.150	6,543	0.063	0.289	0.930	0.867	MH-2298
1210 1211	CBD LR	CBD LR	0.116 0.248	5,055 10,788	0.048 0.103	0.282 0.219	0.894 0.760	0.846 0.657	MH-1245 MH-1145
1212 1213	LR MR	LR MR	0.227 0.155	9,878 6,747	0.095 0.065	0.219 0.188	0.752 0.629	0.657 0.564	MH-1137 MH-1081
1214 1215	MR CBD	MR CBD	0.159 0.125	6,941 5,466	0.066	0.306	0.984 0.964	0.918 0.912	MH-2298 MH-1217
1216 1217	Vacant MR	MR MR	0.239	10,403 7,225	0.100 0.069	0.460	1.480 0.633	1.380 0.564	MH-2298 MH-2088
1218	MR	MR	0.174	7,589	0.073	0.188	0.637	0.564	MH-2028
1219 1220	MR CBD	MR CBD	0.204 0.162	8,867 7,053	0.085	0.188	0.649	0.564	MH-2088 MH-1163
1221 1222	CBD CBD	CBD CBD	0.244 0.188	10,641 8,188	0.102 0.078	0.593 0.457	1.881 1.449	1.779 1.371	MH-1203 MH-1217
1223 1224	PQP Vacant	PQP MR	2.189 0.203	95,342 8,830	0.912 0.085	17.361 0.391	52.995 1.258	52.083 1.173	MH-1145 MH-2298
1225	MR MR	MR MR	0.213 0.196	9,292 8,539	0.089	0.188	0.653	0.564 0.564	MH-2028 MH-2028
1227	LR LR	LR	0.185	8,055 6,442	0.077	0.219	0.734	0.657	MH-1079 MH-1075
1229	MR	MR	0.144	6,259	0.060	0.277	0.891	0.831	MH-2298
1230 1231	LR CBD	LR CBD	0.174 0.594	7,566 25,880	0.073 0.248	0.219 1.444	0.730 4.580	0.657 4.332	MH-1145 MH-1245
1232 1233	Vacant LR	MHR LR	0.489 0.319	21,293 13,903	0.204 0.133	0.917 0.219	2.955 0.790	2.751 0.657	MH-2094 MH-1165
1234 1235	CBD CBD	CBD CBD	0.278	12,121 13,259	0.116	0.676 0.739	2.144 2.344	2.028 2.217	MH-1163 MH-1219
1236 1237	MR MR	MR MR	0.155 0.326	6,738 14,190	0.065 0.136	0.298 0.188	0.959 0.700	0.894 0.564	MH-2298 MH-2016
1238 1239	LR	LR	0.177 0.154	7,694 6,698	0.074	0.219	0.731	0.657	MH-1075 MH-1079
1240	MR	MR	0.153	6,646	0.064	0.188	0.628	0.564	MH-2028
1241 1242	MR LR	MR LR	0.159 0.239	6,920 10,415	0.066 0.100	0.306 0.219	0.984 0.757	0.918 0.657	MH-2298 MH-1243
1243 1244	MR CBD	MR CBD	0.128 0.169	5,557 7,378	0.053	0.246 0.411	0.791 1.303	0.738 1.233	MH-2298 MH-1217
1245 1246	MR LR	MR LR	0.174 0.158	7,583 6,868	0.073	0.188 0.219	0.637 0.723	0.564 0.657	MH-2088 MH-1079
1247 1248	MR CBD	MR CBD	0.141 0.274	6,163 11,921	0.059 0.114	0.188	0.623	0.564 1.998	MH-2028 MH-1163
1249 1250	LR CBD	LR CBD	0.229 0.273	9,974	0.095	0.219	0.752	0.657	MH-1145 MH-1219
1251	MR	MR	0.132	5,743	0.055	0.254	0.817	0.762	MH-2298
1252 1253	MR LR	MR LR	0.161 0.187	7,030 8,130	0.067 0.078	0.310 0.219	0.997 0.735	0.930 0.657	MH-2298 MH-1079
1254 1255	LR LR	LR LR	0.143 0.160	6,226 6,964	0.060	0.219 0.219	0.717 0.724	0.657 0.657	MH-1075 MH-1163
1256 1257	MR LR	MR LR	0.130 0.111	5,653 4,829	0.054 0.046	0.188 0.219	0.618 0.703	0.564 0.657	MH-2028 MH-1217
1258 1259	MR Vacant	MR MR	0.236	10,283 6,582	0.098	0.188	0.662	0.564 0.873	MH-2016 MH-2298
1260 1261	MR LR	MR LR	0.154 0.170	6,719	0.064	0.296	0.952	0.888	MH-2298 MH-2298 MH-1079
1262	MR	MR	0.142	7,416 6,170	0.059	0.219	0.728	0.657	MH-2028
1263 1264	LR CBD	LR CBD	0.162 0.231	7,039 10,073	0.068	0.219 0.561	0.725	0.657 1.683	MH-1163 MH-1219
1265 1266	MR MR	MR MR	0.181 0.149	7,902 6,484	0.075 0.062	0.188 0.188	0.639 0.626	0.564 0.564	MH-2092 MH-2092
1267 1268	MR MR	MR MR	0.155 0.147	6,767 6,406	0.065 0.061	0.188 0.188	0.629 0.625	0.564 0.564	MH-2092 MH-2092
1269 1270	MR MR	MR MR	0.146	6,348 6,260	0.061	0.188	0.625	0.564	MH-2092 MH-2092 MH-2092
1271	MR	MR	0.153	6,685	0.064	0.188	0.628	0.564	MH-2092
1272 1273	MR MR	MR MR	0.144 0.146	6,285 6,348	0.060	0.188	0.624	0.564	MH-2090 MH-2090
1274 1275	MR MR	MR MR	0.138 0.151	6,016 6,597	0.058 0.063	0.188 0.188	0.622 0.627	0.564 0.564	MH-2090 MH-2090
1276 1277	MR MR	MR MR	0.159 0.149	6,921 6,492	0.066	0.188 0.188	0.630 0.626	0.564 0.564	MH-2090 MH-2090
1278 1279	MR MR	MR MR	0.143 0.142	6,218 6,201	0.060	0.188	0.624 0.623	0.564 0.564	MH-2090 MH-2090
1280 1281	CBD MR	CBD MR	0.407 0.151	17,711 6,560	0.170	0.989	3.137 0.627	2.967 0.564	MH-30114 MH-2090
1282	MR	MR	0.138	5,997	0.058	0.188	0.622	0.564	MH-2088
1283 1284	MR CBD	MR CBD	0.155 0.300	6,769 13,060	0.065	0.188	0.629	0.564 2.187	MH-2088 MH-1163
1285 1286	LR MR	LR MR	0.172 0.141	7,491 6,123	0.072 0.059	0.219 0.271	0.729 0.872	0.657 0.813	MH-1079 MH-2298
1287 1288	PQP MR	PQP MR	0.150	6,516 7,902	0.063	0.000	0.063	0.000 0.564	MH-1243 MH-2016
1289 1290	LR	LR LR	0.170	7,408	0.071	0.219	0.728	0.657	MH-1351 MH-1145
1291	LR	LR	0.212	9,223	0.088	0.219	0.745	0.657	MH-1163
4000	MR	MR	0.176	7,672	0.073	0.188	0.637 0.651	0.564 0.564	MH-2016
1292 1293	MR	MR	0.209	9,100	0.087	0.188			MH-2028
	MR CBD MR	MR CBD MR CBD	0.209 0.133 0.147	9,100 5,775 6,418	0.087 0.055 0.061	0.188 0.323 0.188	0.651 1.024 0.625	0.364 0.969 0.564	MH-2028 MH-1217 MH-2088

			Attribi	utes of parcel_loac	0				
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1298	LR	LR	0.166	7,231	0.069	0.219	0.726	0.657	MH-1075
1299 1300	LR MR	LR MR	0.130 0.153	5,684 6,673	0.054	0.219 0.188	0.711 0.628	0.657 0.564	MH-1145 MH-2016
1301 1302	LR MR	LR MR	0.170	7,407 10,112	0.071	0.219 0.188	0.728 0.661	0.657 0.564	MH-1351 MH-2016
1303 1304	LR CBD	LR CBD	0.447 0.426	19,488 18,541	0.186 0.178	0.219	0.843 3.283	0.657 3.105	MH-1163 MH-1163
1305	MR	MR	0.178	7,733	0.074	0.188	0.638	0.564	MH-2088
1306 1307	MR LR	MR LR	0.151 0.178	6,592 7,764	0.063 0.074	0.188 0.219	0.627 0.731	0.564 0.657	MH-2016 MH-1145
1308 1309	CBD MR	CBD MR	0.059 0.189	2,569 8,214	0.025	0.143 0.364	0.454	0.429	MH-1203 MH-2298
1310 1311	LR MR	LR MR	0.170 0.133	7,407 5,774	0.071 0.055	0.219 0.256	0.728 0.823	0.657 0.768	MH-1351 MH-2298
1312	MR CBD	MR CBD	0.129 0.102	5,624	0.054	0.188	0.618	0.564	MH-2016
1313 1314	CBD	CBD	0.095	4,432 4,136	0.043 0.040	0.231	0.733	0.744 0.693	MH-1219 MH-1203
<u>1315</u> 1316	MR MR	MR MR	0.141 0.177	6,141 7,716	0.059	0.271 0.188	0.872 0.638	0.813 0.564	MH-2298 MH-2016
1317 1318	LR LR	LR LR	0.134 0.170	5,830 7,384	0.056 0.071	0.219 0.219	0.713 0.728	0.657 0.657	MH-1145 MH-1351
1319 1320	MR	MR LR	0.165	7,183	0.069	0.188	0.633	0.564	MH-2016 MH-1079
1321	LR	LR	0.204	8,894	0.085	0.219	0.742	0.657	MH-1075
1322 1323	MR LR	MR LR	0.228 0.178	9,949 7,740	0.095 0.074	0.188 0.219	0.659 0.731	0.564 0.657	MH-2016 MH-1075
1324 1325	LR PQP	LR PQP	0.403	17,533 14,566	0.168 0.139	0.219 0.812	0.825 2.575	0.657 2.436	MH-1163 MH-1221
1326 1327	LR LR	LR LR	0.227 0.121	9,878 5,290	0.095	0.219	0.752 0.707	0.657 0.657	MH-1141 MH-1145
1328	MR	MR	0.219	9,521	0.091	0.188	0.655	0.564	MH-2082
1329 1330	MHR MR	MHR MR	0.149 0.150	6,473 6,513	0.062	0.188	0.626 0.627	0.564 0.564	MH-2084 MH-2082
1331 1332	MR MR	MR MR	0.148 0.151	6,451 6,568	0.062	0.188 0.188	0.626 0.627	0.564 0.564	MH-2082 MH-2082
1333 1334	MR MR	MR MR	0.155 0.153	6,767 6,643	0.065 0.064	0.188 0.188	0.629 0.628	0.564 0.564	MH-2082 MH-2082
1335 1336	MR	MR MR	0.151	6,588 6,223	0.063	0.188	0.627	0.564	MH-2082 MH-2082 MH-2082
1337	LR	LR	0.248	10,818	0.103	0.219	0.760	0.657	MH-1351
1338 1339	MR MR	MR MR	0.125 0.152	5,465 6,617	0.052	0.241 0.188	0.775 0.627	0.723 0.564	MH-2298 MH-2082
1340 1341	MR MR	MR MR	0.150 0.151	6,515 6,576	0.063	0.188 0.188	0.627 0.627	0.564 0.564	MH-2082 MH-2082
1342 1343	MR MR	MR MR	0.161 0.158	7,032 6,896	0.067 0.066	0.188 0.188	0.631 0.630	0.564 0.564	MH-2090 MH-2090
1344 1345	LR MR	LR MR	0.142	6,178 8,787	0.059	0.219	0.716	0.657	MH-1079 MH-2090
1346	MR	MR	0.156	6,791	0.065	0.188	0.629	0.564	MH-2054
1347 1348	CBD MR	CBD MR	0.118 0.139	5,142 6,050	0.049 0.058	0.287 0.188	0.910 0.622	0.861 0.564	MH-1203 MH-2054
1349 1350	MR MR	MR MR	0.173	7,533 5,797	0.072	0.188 0.188	0.636 0.619	0.564 0.564	MH-2054 MH-2088
1351 1352	LR MR	LR MR	0.175 0.141	7,616 6,148	0.073 0.059	0.219 0.271	0.730 0.872	0.657 0.813	MH-1079 MH-2298
1353 1354	LR	LR LR	0.410	17,853 6,100	0.171	0.219	0.828	0.657	MH-1163 MH-1079
1355	MR	MR	0.152	6,628	0.063	0.293	0.942	0.879	MH-2298
1356 1357	LR CBD	LR CBD	0.176 0.101	7,674 4,381	0.073 0.042	0.219 0.245	0.730 0.777	0.657 0.735	MH-1079 MH-1219
1358 1359	LR PQP	LR PQP	0.156 9.193	6,800 400,439	0.065	0.219 24.306	0.722 76.749	0.657 72.918	MH-1141 MH-1119
1360 1361	MR MR	MR MR	0.165 0.166	7,192 7,237	0.069	0.318	1.023 1.029	0.954 0.960	MH-2298 MH-2298
1362 1363	MR	MR MR	0.153 0.225	6,682 9,785	0.064	0.188	0.628 0.658	0.564	MH-2016 MH-2016
1364	MR	MR	0.164	7,148	0.068	0.188	0.632	0.564	MH-2016
1365 1366	MR LR	MR LR	0.177 0.154	7,728 6,725	0.074 0.064	0.341 0.219	1.097 0.721	1.023 0.657	MH-2298 MH-1079
1367 1368	LR LR	LR LR	0.185 0.165	8,072 7,184	0.077	0.219 0.219	0.734 0.726	0.657 0.657	MH-1079 MH-1141
1369 1370	CBD LR	CBD LR	0.077 0.120	3,365 5,214	0.032	0.187 0.219	0.593 0.707	0.561 0.657	MH-1221 MH-1163
1371 1372	LR MR	LR MR	0.093 0.151	4,059 6,564	0.039 0.063	0.219	0.696 0.627	0.657 0.564	MH-1145 MH-2054
1373	LR CBD	LR CBD	0.115	5,012	0.048	0.219	0.705	0.657	MH-1145
1374 1375	MR	MR	0.169 0.135	7,364 5,897	0.070	0.411 0.188	1.303 0.620	1.233 0.564	MH-1221 MH-2016
1376 1377	CBD LR	CBD LR	0.203 0.183	8,835 7,955	0.085 0.076	0.493 0.219	1.564 0.733	1.479 0.657	MH-1221 MH-1079
1378 1379	MHR LR	MHR LR	0.131 0.215	5,724 9,350	0.055 0.090	0.188 0.219	0.619 0.747	0.564 0.657	MH-2084 MH-1079
1380 1381	LR CBD	LR CBD	0.123	5,355 4,911	0.051 0.047	0.219	0.708	0.657	MH-1141 MH-1219
1382 1383	MR MR	MR MR	0.151 0.148	6,559 6,455	0.063	0.291	0.936	0.873 0.564	MH-2298 MH-2016
1384	LR	LR	0.127	5,537	0.053	0.219	0.710	0.657	MH-1055
1385 1386	CBD LR	CBD LR	0.148	6,437 8,009	0.062	0.360	1.142 0.734	1.080 0.657	MH-1221 MH-1079
1387 1388	MR MR	MR MR	0.148 0.158	6,444 6,878	0.062	0.188 0.188	0.626 0.630	0.564 0.564	MH-2016 MH-2016
1389 1390	MR LR	MR LR	0.226 0.156	9,848 6,804	0.094 0.065	0.188 0.219	0.658 0.722	0.564 0.657	MH-2016 MH-1141
1391 1392	LR	LR PQP	0.126	5,468 114,220	0.053	0.219	0.710	0.657	MH-1073 MH-1163
1393 1394	LR LR	LR LR	0.144	6,289	0.060	0.219	0.717	0.657	MH-1055 MH-1079
1395	MR	MR	0.133	5,774	0.055	0.256	0.823	0.768	MH-2298
1396 1397	CBD LR	CBD LR	0.076 0.165	3,309 7,183	0.032	0.185 0.219	0.587 0.726	0.555 0.657	MH-1221 MH-1079
1398 1399	LR LR	LR LR	0.135 0.158	5,894 6,896	0.056 0.066	0.219 0.219	0.713 0.723	0.657 0.657	MH-1073 MH-1141
1400 1401	CBD	CBD	0.176	7,648	0.073	0.428	1.357 0.633	1.284 0.564	MH-1221 MH-2016
1402	MR	MR	0.187	8,146	0.078	0.188	0.642	0.564	MH-2016
1403 1404	Vacant MR	MHR MR	0.608	26,487 7,229	0.253	1.140 0.320	3.673 1.029	3.420 0.960	MH-2340 MH-2298
1405 1406	LR MR	LR MR	0.129 0.161	5,627 7,010	0.054 0.067	0.219 0.310	0.711 0.997	0.657 0.930	MH-1055 MH-2298
1407 1408	MHR MR	MHR MR	0.136 0.149	5,943 6,477	0.057	0.188	0.621	0.564 0.861	MH-2084 MH-2298
1409	LR	LR	0.133	5,802	0.055	0.219	0.712	0.657	MH-1073
1410 1411	MR CBD	MR CBD	0.175	7,633 4,975	0.073	0.188	0.637 0.879	0.564	MH-2016 MH-1221
	LR	LR	0.170	7,398	0.071	0.219	0.728	0.657	MH-1079
1412 1413 1414	PQP	PQP MR	0.101 0.236	4,390 10,262	0.042	0.245	0.777	0.735	MH-1219 MH-2016

				utes of parcel_load	0				
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1416 1417	LR MR	LR MR	0.109	4,742	0.045	0.219	0.702	0.657	MH-1055 MH-2298
1418	MR	MR	0.126	5,500	0.053	0.243	0.782	0.729	MH-2298
1419 1420	LR CBD	LR CBD	0.145 0.049	6,327 2,150	0.060	0.219 0.119	0.717 0.377	0.657 0.357	MH-1073 MH-1221
1421 1422	LR MR	LR MR	0.133 0.215	5,796 9,365	0.055	0.219	0.712 0.654	0.657 0.564	MH-1141 MH-2054
1423 1424	MR MR	MR MR	0.219 0.222	9,524 9,676	0.091 0.093	0.188 0.188	0.655 0.657	0.564 0.564	MH-2054 MH-2054
1425	MR	MR MR	0.198	8,605 8,891	0.083	0.188	0.647	0.564	MH-2054 MH-2054 MH-2054
1427	LR	LR	0.113	4,912	0.047	0.219	0.704	0.657	MH-1055
1428 1429	MR CBD	MR CBD	0.230 0.068	10,038 2,974	0.096 0.028	0.188 0.165	0.660 0.523	0.564 0.495	MH-2054 MH-1221
1430 1431	MR MR	MR MR	0.205	8,913 9,558	0.085	0.188 0.188	0.649 0.655	0.564 0.564	MH-2054 MH-2054
1432 1433	MR MR	MR MR	0.177	7,697 7,542	0.074	0.188 0.188	0.638 0.636	0.564 0.564	MH-2054 MH-2016
1434 1435	MR MR	MR MR	0.148 0.144	6,442 6,277	0.062	0.188	0.626 0.891	0.564 0.831	MH-2016 MH-2298
1436 1437	CBD	CBD	0.110	4,776	0.046	0.267	0.847	0.801	MH-1221
1438	LR	MR LR	0.177 0.171	7,710 7,451	0.074	0.188	0.638 0.728	0.564 0.657	MH-2054 MH-1049
1439 1440	LR LR	LR LR	0.130 0.324	5,653 14,134	0.054 0.135	0.219 0.219	0.711 0.792	0.657 0.657	MH-1073 MH-1073
1441 1442	LR LR	LR LR	0.097 0.133	4,231 5,793	0.040	0.219 0.219	0.697 0.712	0.657 0.657	MH-1163 MH-1055
1443 1444	CBD PQP	CBD PQP	0.245 0.132	10,668 5,768	0.102 0.055	0.595 0.321	1.887 1.018	1.785 0.963	MH-1141 MH-1221
1445 1446	MR CBD	MR CBD	0.152	6,625 3,190	0.063	0.188	0.627	0.564	MH-2016 MH-1221
1447	MHR	MHR	0.135	5,868	0.056	0.188	0.620	0.564	MH-2084
1448 1449	MR CBD	MR CBD	0.130	5,660 9,875	0.054	0.250	0.804	0.750 1.656	MH-2298 MH-1221
1450 1451	LR MR	LR MR	0.139 0.256	6,040 11,172	0.058 0.107	0.219 0.188	0.715 0.671	0.657 0.564	MH-1073 MH-2016
1452 1453	MR LR	MR LR	0.149 0.143	6,469 6,231	0.062 0.060	0.188 0.219	0.626 0.717	0.564 0.657	MH-2016 MH-1055
1454 1455	MR	MR PQP	0.160	6,986 22,543	0.067	0.188	0.631	0.564	MH-2016 MH-1163
1455 1456 1457	LR MR	LR MR	0.150	6,544 5,926	0.063	0.219	0.720	0.657	MH-1049 MH-2298
1458	LR	LR	0.266	11,567	0.111	0.219	0.768	0.657	MH-1073
1459 1460	LR CBD	LR CBD	0.155 0.184	6,748 8,029	0.065 0.077	0.219 0.447	0.722 1.418	0.657 1.341	MH-1049 MH-1129
1461 1462	LR MR	LR MR	0.189 0.156	8,233 6,779	0.079 0.065	0.219 0.188	0.736 0.629	0.657 0.564	MH-1079 MH-2054
1463 1464	MR MR	MR MR	0.211 0.144	9,200 6,280	0.088 0.060	0.188 0.188	0.652 0.624	0.564 0.564	MH-2016 MH-2054
1465 1466	MR MR	MR MR	0.144 0.149	6,264 6,475	0.060	0.188	0.624	0.564 0.564	MH-2054 MH-2054
1467	MR	MR LR	0.140	6,087	0.058	0.269	0.865	0.807	MH-2298
1468 1469	LR MR	MR	0.131 1.858	5,690 80,927	0.055	0.219	0.712	0.657 0.564	MH-1049 MH-2016
1470 1471	MR CBD	MR CBD	0.150 0.214	6,517 9,307	0.063	0.188 0.520	0.627 1.649	0.564 1.560	MH-2054 MH-1223
1472 1473	MR MR	MR MR	0.159 0.151	6,927 6,559	0.066	0.188 0.188	0.630 0.627	0.564 0.564	MH-2054 MH-2054
1474 1475	LR MHR	LR MHR	0.123 0.136	5,340 5,922	0.051 0.057	0.219 0.188	0.708 0.621	0.657 0.564	MH-1055 MH-2084
1476 1477	CBD CBD	CBD CBD	0.142	6,172 12,433	0.059	0.345	1.094 2.198	1.035 2.079	MH-1141 MH-1221
1478	MR	MR	0.184	8,016	0.077	0.188	0.641	0.564	MH-2054
1479 1480	LR LR	LR LR	0.152 0.126	6,613 5,500	0.063 0.053	0.219 0.219	0.720 0.710	0.657 0.657	MH-1049 MH-1079
1481 1482	MR MR	MR MR	0.142 0.179	6,199 7,793	0.059	0.273 0.188	0.878 0.639	0.819 0.564	MH-2298 MH-2054
1483 1484	MR LR	MR LR	0.355	15,448 4,317	0.148 0.041	0.188	0.712 0.698	0.564 0.657	MH-2016 MH-1073
1485 1486	CBD LR	CBD LR	0.126 0.301	5,473 13,094	0.053	0.306	0.971 0.782	0.918 0.657	MH-1223 MH-1049
1487	LR	LR	0.123	5,348	0.051	0.219	0.708	0.657	MH-1079
1488 1489	LR CBD	LR CBD	0.127 0.151	5,530 6,585	0.053	0.219 0.367	1.164	0.657	MH-1073 MH-1221
1490 1491	MR MR	MR MR	0.148 0.156	6,432 6,780	0.062 0.065	0.188 0.188	0.626 0.629	0.564 0.564	MH-2054 MH-2054
1492 1493	MR CBD	MR CBD	0.111 0.180	4,832 7,833	0.046 0.075	0.214 0.438	0.688 1.389	0.642 1.314	MH-2298 MH-1129
1494 1495	MR MR	MR MR	0.210 0.219	9,151 9,552	0.088	0.188 0.188	0.652 0.655	0.564 0.564	MH-2016 MH-2054
1496 1497	MR MR	MR MR	0.185	8,053 5,841	0.077	0.356	1.145 0.620	1.068 0.564	MH-2298 MH-2054
1498	PQP	PQP LR	0.505	21,976	0.210	1.227	3.891	3.681	MH-1163
1499 1500	LR CBD	CBD	0.126	5,497 2,691	0.053	0.219 0.151	0.710	0.657 0.453	MH-1055 MH-1223
1501 1502	MR MR	MR MR	0.145 0.124	6,329 5,402	0.060 0.052	0.188 0.188	0.624 0.616	0.564 0.564	MH-2054 MH-2054
1503 1504	LR MR	LR MR	0.128 0.301	5,597 13,132	0.053 0.125	0.219 0.188	0.710 0.689	0.657 0.564	MH-1079 MH-2016
1505 1506	MR MR	MR MR	0.123 0.148	5,357 6,447	0.051 0.062	0.188	0.615 0.626	0.564 0.564	MH-2054 MH-2054
1507 1508	LR CBD	LR CBD	0.142	6,204 2,777	0.059	0.219	0.716	0.657	MH-1073 MH-1223
1509	MHR	MHR	0.134	5,855	0.056	0.188	0.620	0.564	MH-2106
1510 1511	LR CBD	LR CBD	0.164 0.568	7,135 24,755	0.068	0.219	0.725 4.380	0.657 4.143	MH-1073 MH-1129
1512 1513	LR CBD	LR CBD	0.249 0.065	10,850 2,844	0.104 0.027	0.219 0.158	0.761 0.501	0.657 0.474	MH-1119 MH-1223
1514 1515	MR LR	MR LR	0.135 0.126	5,882 5,486	0.056 0.053	0.188 0.219	0.620 0.710	0.564 0.657	MH-2054 MH-1079
1516 1517	LR Vacant	LR MR	0.187 5.240	8,127 228,239	0.078	0.219	0.735	0.657 30.261	MH-1141 MH-1359
1518	PQP	PQP	0.110	4,801	0.046	0.267	0.847	0.801	MH-1163
1519 1520	CBD LR	CBD LR	0.061 0.124	2,667 5,415	0.025	0.148	0.469	0.444 0.657	MH-1223 MH-1073
1521 1522	MR CBD	MR CBD	0.248	10,801 2,747	0.103	0.188 0.153	0.667 0.485	0.564 0.459	MH-2016 MH-1223
1523 1524	MR MR	MR MR	0.157 0.138	6,832 6,003	0.065 0.058	0.188 0.188	0.629 0.622	0.564 0.564	MH-2054 MH-2054
1525 1526	CBD	CBD MR	0.063	2,758 8,933	0.026	0.153	0.485	0.459	MH-1223 MH-2054
1527	LR	LR	0.130	5,666	0.054	0.219	0.711	0.657	MH-1073
1528 1529	MR MR	MR MR	0.135 0.139	5,893 6,043	0.056 0.058	0.188 0.188	0.620 0.622	0.564 0.564	MH-2054 MH-2054
1530	CBD	CBD	0.354	15,428	0.148	0.860 0.219	2.728 0.709	2.580 0.657	MH-1223 MH-1119
1531 1532	LR MR	LR MR	0.124	5,395 5,831	0.052	0.188	0.620	0.037	MH-2054

Parcel IDExisting Use1534LR1535CBD1536MR1537MR1538MHR1539MR1540MR1541MR1542LR1543LR1544LR1545CBD1546CBD1547LR1548CBD1549MR1550LR1551LR1552CBD1553MR1555LR1555LR1555LR1556LR1555LR1555LR1556LR1557MR1556LR1556LR1561MR1562MR1563LR1564MR1565LR1566LR1567MR1568MR1569LR1571CBD1574LR1575LR1576LR1577CBD1574LR1575LR1576LR1581MR1582MR1583MR1584MR1585MR1584MR1585MR1584MR1585MR1584MR1585MR1586MR1587MR <th>•</th> <th>Buildout Land Use</th> <th>Area</th> <th>Area</th> <th>1/1</th> <th></th> <th></th> <th></th> <th></th>	•	Buildout Land Use	Area	Area	1/1				
1536 CBD 1537 MR 1538 MHR 1539 MR 1540 MR 1541 MR 1542 LR 1544 LR 1545 CBD 1546 CBD 1547 LR 1548 CBD 1549 MR 1550 LR 1551 LR 1552 CBD 1553 MR 1555 LR 1555 LR 1556 LR 1557 MR 1558 MR 1556 LR 1557 MR 1563 LR 1556 LR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1569 LR 1561 MR 1562 LR 1571			(acres)	(ft ²)	(gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1536 MR 1537 MR 1538 MHR 1539 MR 1540 MR 1541 MR 1542 LR 1544 LR 1545 CBD 1546 CBD 1547 LR 1548 CBD 1555 LR 1550 LR 1551 LR 1555 LR 1556 LR 1555 LR 1556 LR 1557 MR 1558 MR 1559 MR 1556 LR 1557 MR 1560 MR 1555 LR 1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1571 CBD 1572 MR 1573		LR CBD	0.127	5,517	0.053	0.219	0.710	0.657	MH-1049
1538 MHR 1539 MR 1540 MR 1541 MR 1542 LR 1543 LR 1544 LR 1545 CBD 1546 CBD 1547 LR 1548 CBD 1551 LR 1552 CBD 1553 MR 1554 MR 1555 LR 1556 LR 1557 MR 1558 MR 1559 MR 1556 LR 1557 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1567 MR 1568 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575		MR	0.126 0.155	5,493 6,763	0.053 0.065	0.306 0.188	0.971 0.629	0.918 0.564	MH-1223 MH-2016
1540 MR 1541 MR 1542 LR 1544 LR 1545 CBD 1546 CBD 1547 LR 1548 CBD 1549 MR 1550 LR 1551 LR 1552 CBD 1553 MR 1555 LR 1556 LR 1557 MR 1558 MR 1556 LR 1556 LR 1557 MR 1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1566 LR 1570 CBD 1571 CBD 1572 MR 157		MR MHR	0.169 0.124	7,371 5,403	0.070	0.188 0.188	0.634 0.616	0.564 0.564	MH-2054 MH-2106
1541 MR 1542 LR 1543 LR 1544 LR 1545 CBD 1546 CBD 1547 LR 1550 LR 1551 LR 1552 CBD 1555 LR 1556 LR 1555 LR 1556 LR 1557 MR 1556 LR 1557 MR 1556 LR 1557 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1563 LR 1564 MR 1565 LR 1567 MR 1568 MHR 1570 CBD 1571 CBD 1572 MR 1573 LR 1574		MR MR	0.211 0.143	9,175 6,250	0.088	0.188 0.188	0.652 0.624	0.564 0.564	MH-2016 MH-2054
1543 LR 1544 LR 1545 CBD 1547 LR 1548 CBD 1549 MR 1550 LR 1551 LR 1552 CBD 1553 MR 1554 MR 1555 LR 1556 LR 1557 MR 1558 MR 1559 MR 1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 158		MR LR	0.207	9,028 10,953	0.086	0.188	0.650	0.564 0.657	MH-2016 MH-1073
1545 CBD 1546 CBD 1547 LR 1549 MR 1550 LR 1551 LR 1552 CBD 1553 MR 1555 LR 1556 LR 1557 MR 1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 157		LR	0.248	10,821	0.103	0.219	0.760	0.657	MH-1051
1547 LR 1548 CBD 1550 LR 1551 LR 1552 CBD 1553 MR 1554 MR 1555 LR 1556 LR 1557 MR 1558 MR 1559 MR 1550 MR 1551 LR 1552 MR 1553 MR 1556 LR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1569 LR 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1580		LR CBD	0.122 0.050	5,329 2,175	0.051	0.219	0.708 0.387	0.657 0.366	MH-1119 MH-1223
1549 MR 1550 LR 1551 LR 1552 CBD 1553 MR 1554 MR 1555 LR 1556 LR 1557 MR 1556 LR 1557 MR 1556 LR 1557 MR 1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1567 MR 1568 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1580 MR 1581 MR 1582 LR 1583		CBD LR	0.192 0.139	8,378 6,067	0.080 0.058	0.467 0.219	1.481 0.715	1.401 0.657	MH-1129 MH-1051
1551 LR 1552 CBD 1553 MR 1555 LR 1556 LR 1557 MR 1558 MR 1557 MR 1556 LR 1557 MR 1556 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1580 MR 1581 MR 1582 LR 1583 MR 1584 MR 1585		CBD MR	0.050 0.220	2,170 9,591	0.021	0.122 0.188	0.387 0.656	0.366 0.564	MH-1223 MH-2016
1552CBD1553MR1554MR1555LR1556LR1557MR1558MR1556MR1557MR1561MR1562MR1563LR1564MR1565LR1566LR1566LR1567MR1568MHR1565LR1566LR1570CBD1571CBD1572MR1573CBD1574LR1575LR1576LR1576LR1577CBD1578LR1576LR1577CBD1578LR1576LR1581MR1582LR1583MR1584MR1585MR1586MR1587MR1588MR1589MR1580MR1581LR1581LR1582LR1584MR1585MR1586MR1587MR1588MR1589LR1591LR1592PQP1593LR1594LR1600LR1601LR1602MR1603MR1614		LR LR	0.130 0.137	5,680 5,986	0.054 0.057	0.219 0.219	0.711 0.714	0.657 0.657	MH-1119 MH-1049
1554 MR 1555 LR 1556 LR 1557 MR 1558 MR 1559 MR 1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1566 LR 1567 MR 1568 MHR 1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1591<		CBD	0.239 0.154	10,401 6,714	0.100	0.581	1.843 0.628	1.743 0.564	MH-1223 MH-2054
1556 LR 1557 MR 1558 MR 1559 MR 1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1567 MR 1567 MR 1567 MR 1567 MR 1567 MR 1567 MR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586<		MR LR	0.140 0.148	6,080	0.058	0.188	0.622	0.564	MH-2054 MH-2054 MH-1051
1558 MR 1559 MR 1560 MR 1561 MR 1562 MR 1563 LR 1565 LR 1566 LR 1565 LR 1566 LR 1567 MR 1568 MHR 1567 MR 1568 MHR 1569 LR 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1580 LR 1575 LR 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1591<		LR	0.129	6,443 5,613	0.054	0.219	0.711	0.657 0.657	MH-1049
1560 MR 1561 MR 1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1567 MR 1567 MR 1567 MR 1567 MR 1567 MR 1570 CBD 1571 CBD 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1590 MR 1591 LR 1592 PQP 1593		MR MR	0.144	6,259 6,276	0.060	0.188 0.188	0.624 0.624	0.564 0.564	MH-2054 MH-2054
1562 MR 1563 LR 1564 MR 1565 LR 1566 LR 1567 MR 1568 MHR 1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1579 CBD 1578 LR 1579 CBD 1580 LR 1580 LR 1580 MR 1580 MR 1580 MR 1581 MR 1582 MR 1583 MR 1584 MR 1585 MR 1586 MR 1591 LR 1592 PQP 15		MR MR	0.180 0.259	7,845 11,277	0.075	0.188 0.188	0.639 0.672	0.564 0.564	MH-2054 MH-2016
1563 LR 1564 MR 1565 LR 1566 LR 1566 LR 1567 MR 1568 MHR 1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1589 MR 1580 MR 1581 LR 1582 PQP 1593 LR 1594 LR 159		MR MR	0.220 0.133	9,562 5,813	0.092 0.055	0.188 0.188	0.656 0.619	0.564 0.564	MH-2054 MH-2054
1565 LR 1566 LR 1567 MR 1568 MHR 1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1		LR MR	0.124 0.164	5,393 7,161	0.052	0.219	0.709	0.657	MH-1119 MH-2016
1567 MR 1568 MHR 1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1589 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1600 LR 1600 R 16		LR	0.135	5,890	0.056	0.219	0.713	0.657	MH-1049
1569 LR 1570 CBD 1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1577 CBD 1580 LR 1573 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1601 LR 1602 MR 1603 MR 16		LR MR	0.295	12,836 5,925	0.123	0.219	0.780 0.621	0.657 0.564	MH-1073 MH-2054
1571 CBD 1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1587 MR 1588 MR 1587 MR 1588 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1600 LR 1601 LR 1602 MR 1603 MR 1604		MHR LR	0.141 0.135	6,121 5,886	0.059 0.056	0.188 0.219	0.623 0.713	0.564 0.657	MH-2106 MH-1051
1572 MR 1573 CBD 1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1587 MR 1588 MR 1589 MR 1580 MR 1581 LR 1582 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604		CBD CBD	0.157 0.086	6,850 3,760	0.065 0.036	0.382 0.209	1.211 0.663	1.146 0.627	MH-1225 MH-1223
1574 LR 1575 LR 1576 LR 1577 CBD 1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1589 MR 1580 MR 1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605<		MR CBD	0.156	6,789 6,456	0.065	0.188	0.629	0.564	MH-2054 MH-1131
1576 LR 1577 CBD 1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1589 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 160		LR LR	0.307	13,389	0.128	0.219	0.785	0.657	MH-1051
1578 LR 1579 CBD 1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611		LR	0.123	5,349 5,396	0.051	0.219 0.219	0.708	0.657	MH-1061 MH-1051
1580 LR 1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1587 MR 1588 MR 1587 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1611<		CBD LR	0.238 0.170	10,367 7,413	0.099 0.071	0.578 0.219	1.833 0.728	1.734 0.657	MH-1225 MH-1119
1581 MR 1582 LR 1583 MR 1584 MR 1585 MR 1586 MR 1587 MR 1588 MR 1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1607 MR 1618 LR 1619<		CBD LR	0.257 0.132	11,198 5,738	0.107 0.055	0.625 0.219	1.982 0.712	1.875 0.657	MH-1131 MH-1061
1583 MR 1584 MR 1585 MR 1586 MR 1586 MR 1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615		MR LR	0.140 0.164	6,096 7,156	0.058 0.068	0.188 0.219	0.622 0.725	0.564 0.657	MH-2054 MH-1051
1585 MR 1586 MR 1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 161		MR	0.341	14,872	0.142	0.188	0.706	0.564	MH-2016
1587 MR 1588 MR 1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 161		MR MR	0.126 0.235	5,479 10,248	0.053 0.098	0.188 0.188	0.617 0.662	0.564 0.564	MH-2054 MH-2016
1589 MR 1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1618 MR 1619 Vacant 1620 LR <td< td=""><td></td><td>MR MR</td><td>0.124 0.179</td><td>5,422 7,778</td><td>0.052</td><td>0.188 0.188</td><td>0.616 0.639</td><td>0.564 0.564</td><td>MH-2054 MH-2054</td></td<>		MR MR	0.124 0.179	5,422 7,778	0.052	0.188 0.188	0.616 0.639	0.564 0.564	MH-2054 MH-2054
1590 MR 1591 LR 1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR <td< td=""><td></td><td>MR MR</td><td>0.141 0.147</td><td>6,125 6,412</td><td>0.059 0.061</td><td>0.188 0.188</td><td>0.623 0.625</td><td>0.564 0.564</td><td>MH-2054 MH-2054</td></td<>		MR MR	0.141 0.147	6,125 6,412	0.059 0.061	0.188 0.188	0.623 0.625	0.564 0.564	MH-2054 MH-2054
1592 PQP 1593 LR 1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 16		MR LR	0.169 0.299	7,366	0.070	0.188	0.634	0.564	MH-2054
1594 LR 1595 MHR 1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR <td< td=""><td></td><td>PQP</td><td>0.312</td><td>13,610</td><td>0.130</td><td>0.758</td><td>2.404</td><td>2.274</td><td>MH-1051 MH-1225</td></td<>		PQP	0.312	13,610	0.130	0.758	2.404	2.274	MH-1051 MH-1225
1596 MR 1597 CBD 1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR <td< td=""><td></td><td>LR LR</td><td>0.148 0.123</td><td>6,468 5,352</td><td>0.062 0.051</td><td>0.219 0.219</td><td>0.719 0.708</td><td>0.657 0.657</td><td>MH-1119 MH-1061</td></td<>		LR LR	0.148 0.123	6,468 5,352	0.062 0.051	0.219 0.219	0.719 0.708	0.657 0.657	MH-1119 MH-1061
1598 LR 1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1606 MR 1607 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1		MHR MR	0.130 0.158	5,654 6,862	0.054	0.188 0.188	0.618 0.630	0.564 0.564	MH-2106 MH-2054
1599 LR 1600 LR 1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1616 LR 1617 MR 1618 MR 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1630		CBD LR	0.112 0.239	4,875 10,425	0.047 0.100	0.272 0.219	0.863 0.757	0.816 0.657	MH-1131 MH-1119
1601 LR 1602 MR 1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1601 MR 1602 CBD 1603 CBD 1604 CBD 1605 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR <		LR LR	0.130	5,660 8,623	0.054	0.219	0.711 0.740	0.657 0.657	MH-1061 MH-1059
1603 MR 1604 CBD 1605 MR 1606 MR 1607 MR 1607 MR 1607 MR 1607 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1630 LR 1631 LR 1632 MR		LR	0.300	13,087	0.125	0.219	0.782	0.657	MH-1051
1605 MR 1606 MR 1607 MR 1608 CBD 1609 MR 1610 MR 1610 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1632 MR 1633 MR 1634 MR 1635 LR 1		MR MR	0.138 0.144	6,011 6,267	0.058 0.060	0.188 0.188	0.622 0.624	0.564 0.564	MH-2054 MH-2054
1607 MR 1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		CBD MR	0.111 0.150	4,841 6,514	0.046	0.270 0.188	0.856 0.627	0.810 0.564	MH-1131 MH-2054
1608 CBD 1609 MR 1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1634 MR 1635 LR 1634 MR 1635 LR 1636 LR 1637 MR		MR MR	0.175 0.315	7,623 13,719	0.073 0.131	0.188 0.188	0.637 0.695	0.564 0.564	MH-2054 MH-2016
1610 MR 1611 LR 1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1634 MR 1635 LR 1634 MR 1635 LR 1636 LR 1637 MR		CBD MR	0.152 0.232	6,631 10,106	0.063	0.369	1.170 0.661	1.107 0.564	MH-1225 MH-2016
1612 CBD 1613 LR 1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1633 MR 1633 LR 1634 MR 1635 LR 1636 LR 1637 MR		MR	0.188	8,197	0.078	0.188	0.642	0.564	MH-2054
1614 LR 1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1634 MR 1635 LR 1634 MR 1635 LR 1636 LR		LR CBD	0.224	9,751 5,513	0.093	0.219	0.750 0.980	0.657	MH-1119 MH-1131
1615 MHR 1616 LR 1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1633 MR 1633 LR 1634 MR 1635 LR 1634 MR 1635 LR 1634 MR		LR LR	0.201 0.260	8,775 11,304	0.084 0.108	0.219 0.219	0.741 0.765	0.657 0.657	MH-1059 MH-1073
1617 MR 1618 MR 1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1634 MR 1635 LR 1634 MR 1635 LR 1636 LR		MHR LR	0.143 0.172	6,219 7,477	0.060	0.188	0.624 0.729	0.564 0.657	MH-2106 MH-1131
1619 Vacant 1620 LR 1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1632 MR 1633 MR 1634 MR 1635 LR 1634 MR 1635 LR 1636 LR		MR MR	0.194 0.173	8,434 7,556	0.081	0.188	0.645	0.564 0.564	MH-2054 MH-2054
1621 CBD 1622 MR 1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		MR	2.834	123,463	1.181	5.455	17.546	16.365	MH-1003
1623 LR 1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1632 MR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		LR CBD	0.304 0.124	13,253 5,410	0.127 0.052	0.219 0.301	0.784 0.955	0.657 0.903	MH-1051 MH-1131
1624 LR 1625 LR 1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		MR LR	0.148 0.117	6,441 5,084	0.062	0.188 0.219	0.626 0.706	0.564 0.657	MH-2054 MH-1225
1626 MR 1627 CBD 1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		LR LR	0.159 0.139	6,926 6,069	0.066	0.219	0.723 0.715	0.657 0.657	MH-1119 MH-1059
1628 MR 1629 LR 1630 LR 1631 LR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		MR CBD	0.152 0.130	6,600 5,666	0.063	0.188	0.627	0.564 0.948	MH-2054 MH-1131
1630 LR 1631 LR 1632 MR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		MR	0.174	7,579	0.073	0.188	0.637	0.564	MH-2054
1632 MR 1633 MR 1634 MR 1635 LR 1636 LR 1637 MR		LR LR	0.150 0.122	6,513 5,295	0.063	0.219 0.219	0.720	0.657	MH-1121 MH-1225
1634 MR 1635 LR 1636 LR 1637 MR		LR MR	0.133 0.126	5,776 5,476	0.055 0.053	0.219 0.188	0.712 0.617	0.657 0.564	MH-1119 MH-2054
1635 LR 1636 LR 1637 MR		MR MR	0.184 0.140	8,026 6,107	0.077 0.058	0.188 0.188	0.641 0.622	0.564 0.564	MH-2054 MH-2054
1637 MR		LR	0.197 0.132	8,569 5,769	0.082	0.219	0.739	0.657	MH-1131 MH-1059
1030 I MR		MR	0.161	7,008	0.067	0.188	0.631	0.564	MH-2054
1639 LR		MR LR	0.246 0.126	10,703 5,470	0.103	0.188	0.667	0.564 0.657	MH-2016 MH-1121
1640 LR 1641 LR		LR LR	0.203 0.209	8,855 9,114	0.085 0.087	0.219 0.219	0.742 0.744	0.657 0.657	MH-1225 MH-1119
1642 MR 1643 MHR		MR	0.166 0.129	7,252 5,638	0.069 0.054	0.188 0.188	0.633 0.618	0.564 0.564	MH-2054 MH-2106
1644 LR		INIER	0.123	5,954	0.057	0.219	0.714	0.657	MH-1059
1646 LR		MHR LR	1112/1	5,956	0.057	0.188 0.219	0.621 0.731	0.564 0.657	MH-2054 MH-1225
1647 LR 1648 MR		LR MR LR	0.178	7,765	0.074			0.057	MH-1131
1649 MR 1650 LR		LR MR		7,765 6,887 6,729 6,664	0.074 0.066 0.064	0.219 0.188 0.188	0.723 0.628 0.628	0.657 0.564	MH-2054 MH-2054 MH-2054

				utes of parcel_load	0	· ·			
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1652 1653	LR LR	LR LR	0.181 0.287	7,903 12,485	0.075 0.120	0.219	0.732	0.657 0.657	MH-1059 MH-1225
1654	LR	LR	0.134	5,844	0.056	0.219	0.713	0.657	MH-1059
1655 1656	MR MR	MR MR	0.204 0.134	8,875 5,836	0.085	0.188 0.188	0.649 0.620	0.564 0.564	MH-2054 MH-2054
1657 1658	MR MR	MR MR	0.138 0.191	5,994 8,326	0.058	0.188 0.188	0.622 0.644	0.564 0.564	MH-2054 MH-2054
1659 1660	LR MR	LR MR	0.237 0.453	10,305 19,728	0.099 0.189	0.219 0.188	0.756 0.753	0.657 0.564	MH-1131 MH-2016
1661 1662	LR	LR NC	0.181	7,883	0.075	0.219	0.732	0.657	MH-1121 MH-1007
1663	LR	LR	0.145	6,305	0.060	0.219	0.717	0.657	MH-1059
1664 1665	MR LR	MR LR	0.330 0.197	14,393 8,582	0.138 0.082	0.188 0.219	0.702 0.739	0.564 0.657	MH-2016 MH-1059
<u>1666</u> 1667	LR MR	LR MR	0.210 0.141	9,129 6,159	0.088	0.219 0.188	0.745 0.623	0.657 0.564	MH-1359 MH-2054
1668 1669	LR MHR	LR MHR	0.312 0.130	13,579 5,648	0.130 0.054	0.219	0.787 0.618	0.657 0.564	MH-1225 MH-2106
1670 1671	LR LR	LR LR	0.137 0.308	5,951 13,419	0.057 0.128	0.219 0.219	0.714 0.785	0.657 0.657	MH-1127 MH-1131
1672	LR	LR	0.250	10,871	0.104	0.219	0.761	0.657	MH-1121
1673 1674	Vacant LR	OS LR	0.497	21,653 9,861	0.207	0.000	0.207	0.000 0.657	MH-2054 MH-1059
1675 1676	MR MR	MR MR	0.176 0.134	7,675 5,855	0.073 0.056	0.188 0.188	0.637 0.620	0.564 0.564	MH-2054 MH-2054
<u>1677</u> 1678	LR LR	LR LR	0.180 0.148	7,842 6,432	0.075	0.219 0.219	0.732 0.719	0.657 0.657	MH-1127 MH-1359
1679 1680	MR Vacant	MR MR	0.153 10.545	6,657 459,335	0.064 4.394	0.188 20.299	0.628 65.291	0.564 60.897	MH-2054 MH-1003
1681 1682	PR LR	PR	3.090	134,587 6,367	1.288	0.429	1.717	0.429	MH-1123 MH-1359
1683	MR	MR	0.146	6,359	0.061	0.188	0.625	0.564	MH-2054
1684 1685	LR LR	LR LR	0.179 0.141	7,791 6,153	0.075	0.219	0.732	0.657 0.657	MH-1059 MH-1127
1686 1687	LR LR	LR LR	0.087 0.086	3,775 3,767	0.036 0.036	0.219 0.219	0.693 0.693	0.657 0.657	MH-1225 MH-1117
1688 1689	LR LR	LR LR	0.147 0.635	6,422 27,677	0.061 0.265	0.219 0.219	0.718 0.922	0.657 0.657	MH-1359 MH-1127
1690 1691	MR LR	MR LR	0.140	6,097 7,984	0.058	0.188	0.622	0.564 0.657	MH-1007 MH-1059
1692 1693	LR LR	LR LR	0.136	5,907 6,773	0.078	0.219	0.714	0.657	MH-1039 MH-1117 MH-1127
1694	MR	MR	0.221	9,637	0.092	0.188	0.656	0.564	MH-2054
1695 1696	LR MR	LR MR	0.176 0.173	7,672 7,539	0.073 0.072	0.219 0.188	0.730 0.636	0.657 0.564	MH-1359 MH-2054
1697 1698	LR LR	LR LR	0.146 0.248	6,373 10,811	0.061 0.103	0.219 0.219	0.718 0.760	0.657 0.657	MH-1359 MH-1133
1699 1700	MR MR	MR MR	0.144 0.167	6,270 7,296	0.060	0.188	0.624	0.564	MH-2054 MH-2054
1701	MR	MR	0.142	6,165	0.059	0.188	0.623	0.564	MH-1007
1702 1703	MR LR	MR LR	0.148	6,440 9,648	0.062	0.188	0.626	0.564 0.657	MH-2054 MH-1045
1704 1705	LR LR	LR LR	0.150 0.180	6,556 7,852	0.063	0.219 0.219	0.720 0.732	0.657 0.657	MH-1127 MH-1359
1706 1707	LR LR	LR LR	0.144 0.100	6,259 4,372	0.060	0.219 0.219	0.717 0.699	0.657 0.657	MH-1359 MH-1225
1708 1709	Vacant MR	NC MR	0.461 0.242	20,097 10,563	0.192 0.101	0.800 0.188	2.592 0.665	2.400 0.564	MH-1007 MH-2054
1710 1711	LR MR	LR MR	0.117 0.142	5,084 6,200	0.049	0.219	0.706	0.657 0.564	MH-1009 MH-1007
1712	LR	LR	0.144	6,267	0.060	0.219	0.717	0.657	MH-1359
1713 1714	LR LR	LR LR	0.135 0.179	5,892 7,777	0.056 0.075	0.219 0.219	0.713 0.732	0.657 0.657	MH-1133 MH-1359
1715 1716	LR MR	LR MR	0.122 0.147	5,307 6,395	0.051	0.219 0.188	0.708 0.625	0.657 0.564	MH-1009 MH-1007
1717 1718	LR LR	LR LR	0.148	6,450 7,128	0.062	0.219 0.219	0.719 0.725	0.657 0.657	MH-1359 MH-1125
1719 1720	LR LR	LR LR	0.338 0.262	14,739 11,413	0.141 0.109	0.219 0.219	0.798 0.766	0.657 0.657	MH-1133 MH-1127
1721 1722	Vacant LR	NC LR	0.265	11,531 5,032	0.110	0.460	1.490 0.705	1.380 0.657	MH-1007
1723	LR	LR	0.116 0.153	6,671	0.064	0.219	0.721	0.657	MH-1009 MH-1225
1724 1725	PR LR	PR LR	2.587 0.144	112,711 6,281	1.078 0.060	0.359 0.219	1.437 0.717	0.359 0.657	MH-2054 MH-1359
1726 1727	LR MR	LR MR	0.206 0.168	8,976 7,326	0.086 0.070	0.219 0.188	0.743 0.634	0.657 0.564	MH-1359 MH-1007
1728 1729	LR Vacant	LR LR	0.171 1.313	7,457 57,207	0.071 0.547	0.219 2.097	0.728 6.838	0.657 6.291	MH-1125 MH-2054
1730 1731	LR	LR LR	0.126	5,467	0.053	0.219	0.710	0.657	MH-1009 MH-1225
1732	LR LR	LR LR	0.154	6,726	0.064	0.219	0.721	0.657	MH-1127
1733 1734	Vacant	MR	0.160	6,960 11,946	0.067	0.219	0.724	0.657	MH-1359 MH-1007
1735 1736	LR Vacant	LR NC	0.100 0.460	4,349 20,035	0.042 0.192	0.219 0.799	0.699 2.589	0.657 2.397	MH-1133 MH-1007
1737 1738	MR LR	MR LR	0.152 0.127	6,602 5,525	0.063 0.053	0.188 0.219	0.627 0.710	0.564 0.657	MH-1007 MH-1009
1739 1740	LR LR	LR LR	0.120 0.239	5,238 10,402	0.050 0.100	0.219 0.219	0.707 0.757	0.657 0.657	MH-1125 MH-1359
1740 1741 1742	LR LR	LR LR	0.220	9,604	0.092	0.219	0.749	0.657	MH-1127 MH-1125
1743	LR	LR	0.120	5,209	0.050	0.219	0.707	0.657	MH-1009
1744 1745	LR LR	LR LR	0.420	18,274 6,027	0.175	0.219 0.219	0.832	0.657 0.657	MH-1133 MH-1359
1746 1747	Vacant LR	NC LR	0.544 0.185	23,690 8,054	0.227 0.077	0.944 0.219	3.059 0.734	2.832 0.657	MH-1007 MH-1359
1748 1749	LR LR	LR LR	0.160 0.183	6,971 7,962	0.067	0.219 0.219	0.724 0.733	0.657 0.657	MH-1133 MH-1359
1750 1751	OS LR	OS LR	0.831	36,201 10,339	0.346	0.000	0.346	0.000	MH-1007 MH-1009
1752	LR	LR	0.221	9,629	0.092	0.219	0.749	0.657	MH-1125
1753 1754	LR LR	LR LR	0.142 0.207	6,174 8,996	0.059	0.219	0.716	0.657	MH-1359 MH-1125
1755 1756	LR LR	LR LR	0.128 0.164	5,577 7,137	0.053 0.068	0.219 0.219	0.710 0.725	0.657 0.657	MH-1009 MH-1359
1757 1758	LR	LR LR	0.142	6,178 7,062	0.059	0.219	0.716	0.657	MH-1359 MH-1359
1759	LR	LR	0.181	7,867	0.075	0.219	0.732	0.657	MH-1009
1760 1761	NC LR	NC LR	0.676	29,461 5,838	0.282	1.174 0.219	3.804 0.713	3.522 0.657	MH-1007 MH-1009
1762 1763	LR LR	LR LR	0.209 0.158	9,101 6,870	0.087 0.066	0.219 0.219	0.744 0.723	0.657 0.657	MH-1125 MH-1125
1764 1765	LR LR	LR LR	0.156	6,781 11,238	0.065	0.219	0.722	0.657 0.657	MH-1359 MH-1047
						0.219	0.765	0.657	MH-1009
1766 1767	LR LR	LR LR	0.203	8,864 6,193	0.085	0.219	0.716	0.657	MH-1359

	1			outes of parcel_load	0	· ·			
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1770 1771	LR LR	LR LR	0.165 0.224	7,181 9,752	0.069 0.093	0.219 0.219	0.726 0.750	0.657 0.657	MH-1009 MH-1359
1772	LR	LR	0.295	12,865	0.123	0.219	0.780	0.657	MH-1047
1773 1774	LR LR	LR LR	0.347 0.137	15,120 5,966	0.145 0.057	0.219 0.219	0.802 0.714	0.657 0.657	MH-1225 MH-1009
1775 1776	PQP LR	PQP LR	0.503 0.183	21,929 7,975	0.210	0.000 0.219	0.210 0.733	0.000 0.657	MH-1045 MH-1359
1777 1778	LR LR	LR LR	0.132 0.187	5,742 8,149	0.055	0.219 0.219	0.712 0.735	0.657 0.657	MH-1359 MH-1133
1779 1780	LR LR	LR LR	0.234 0.138	10,196 6,001	0.098 0.058	0.219 0.219	0.755 0.715	0.657 0.657	MH-1125 MH-1359
1781 1782	LR LR	LR LR	0.164	7,130	0.068	0.219	0.725	0.657	MH-1009 MH-1359
1783	LR	LR	0.204	8,905	0.085	0.219	0.742	0.657	MH-1009
1784 1785	LR LR	LR LR	0.323 0.162	14,084 7,053	0.135 0.068	0.219 0.219	0.792 0.725	0.657 0.657	MH-1047 MH-1009
1786 1787	LR LR	LR LR	0.223 0.305	9,724 13,305	0.093	0.219 0.219	0.750 0.784	0.657 0.657	MH-1125 MH-1011
1788 1789	LR LR	LR LR	0.134 0.126	5,837 5,478	0.056 0.053	0.219	0.713	0.657 0.657	MH-1009 MH-1359
1790 1791	LR LR	LR LR	0.127 0.146	5,524 6,340	0.053	0.219 0.219	0.710 0.718	0.657 0.657	MH-1359 MH-1359
1792 1793	LR LR	LR LR	0.155 0.158	6,773 6,877	0.065	0.219	0.722	0.657	MH-1009 MH-1359
1794	LR	LR	0.150	6,528	0.063	0.219	0.720	0.657	MH-1125
1795 1796	NC LR	NC LR	1.865 0.133	81,244 5,790	0.777	3.238 0.219	10.491 0.712	9.714 0.657	MH-1007 MH-1009
1797 1798	LR LR	LR LR	0.246 0.139	10,718 6,066	0.103	0.219 0.219	0.760 0.715	0.657 0.657	MH-1133 MH-1123
1799 1800	LR Vacant	LR LR	0.149 0.352	6,476 15,342	0.062 0.147	0.219 0.562	0.719 1.833	0.657 1.686	MH-1011 MH-1009
1800 1801 1802		LR LR	0.332	6,681 6,457	0.064 0.062	0.219	0.721	0.657	MH-1047 MH-1009
1803	LR	LR	0.168	7,299	0.070	0.219	0.727	0.657	MH-1047
1804 1805	LR LR	LR LR	0.161 0.114	7,005 4,948	0.067	0.219 0.219	0.724	0.657 0.657	MH-1359 MH-1123
1806 1807	LR LR	LR LR	0.245 0.161	10,673 7,013	0.102 0.067	0.219 0.219	0.759 0.724	0.657 0.657	MH-1011 MH-1359
1808 1809	LR Vacant	LR AG	0.134 1.022	5,837 44,506	0.056 0.426	0.219 0.000	0.713 0.426	0.657 0.000	MH-1359 MH-1007
1810 1811	LR	LR	0.154	6,705 7,881	0.064	0.219	0.721	0.657	MH-1359 MH-1047
<u>1812</u> 1813	LR LR LR	LR LR	0.131	5,557 6,670	0.053 0.064	0.219	0.732	0.657	MH-1115 MH-1047
1814	LR	LR	0.239	10,391	0.100	0.219	0.757	0.657	MH-1011
1815 1816	LR LR	LR LR	0.352 0.279	15,352 12,135	0.147	0.219 0.219	0.804	0.657 0.657	MH-1047 MH-1047
1817 1818	LR LR	LR LR	0.127 0.150	5,523 6,519	0.053	0.219 0.219	0.710 0.720	0.657 0.657	MH-1115 MH-1115
1819 1820	LR LR	LR LR	0.154 0.219	6,687 9,525	0.064 0.091	0.219 0.219	0.721 0.748	0.657 0.657	MH-1047 MH-1009
1821 1822	LR LR	LR LR	0.143	6,243 5,290	0.060	0.219	0.717 0.707	0.657 0.657	MH-1359 MH-1009
1823	LR	LR	0.142	6,180	0.059	0.219	0.716	0.657	MH-1359
1824 1825	LR LR	LR LR	0.146 0.146	6,378 6,377	0.061 0.061	0.219 0.219	0.718 0.718	0.657 0.657	MH-1115 MH-1047
1826 1827	LR LR	LR LR	0.073 0.156	3,178 6,802	0.030	0.219 0.219	0.687 0.722	0.657 0.657	MH-1133 MH-1011
1828 1829	LR LR	LR LR	0.185 0.144	8,043 6,292	0.077 0.060	0.219 0.219	0.734 0.717	0.657 0.657	MH-1009 MH-1359
1830 1831	LR	LR	0.348	15,179 6,014	0.145	0.219	0.802	0.657	MH-1047 MH-1359
1832	LR	LR	0.235	10,225	0.098	0.219	0.755	0.657	MH-1047
1833 1834	LR LR	LR LR	0.220 0.160	9,575 6,983	0.092 0.067	0.219 0.219	0.749 0.724	0.657 0.657	MH-1115 MH-1011
1835 1836	LR LR	LR LR	0.190 0.179	8,259 7,794	0.079	0.219 0.219	0.736 0.732	0.657 0.657	MH-1009 MH-1359
1837 1838	LR Vacant	LR AG	0.187 2.760	8,147 120,213	0.078	0.219	0.735 1.150	0.657 0.000	MH-1047 MH-1007
1839 1840	LR LR	LR LR	0.157 0.195	6,844 8,481	0.065 0.081	0.219 0.219	0.722 0.738	0.657 0.657	MH-1011 MH-1047
1841 1842	LR	LR LR	0.185	8,065 5,911	0.077	0.219	0.734	0.657	MH-1011 MH-1359
1843	LR	LR	0.178	7,734	0.074	0.219	0.731	0.657	MH-1047
1844 1845	LR LR	LR LR	0.111 0.258	4,835 11,243	0.046	0.219	0.703	0.657	MH-1359 MH-1011
1846 1847	LR LR	LR LR	0.273 0.192	11,901 8,363	0.114 0.080	0.219 0.219	0.771 0.737	0.657 0.657	MH-1359 MH-1009
1848 1849	LR LR	LR LR	0.176 0.172	7,663 7,483	0.073 0.072	0.219 0.219	0.730 0.729	0.657 0.657	MH-1047 MH-1047
1850 1851	LR LR	LR	0.161	7,009 8,058	0.067	0.219	0.724	0.657	MH-1011 MH-1047
1852	LR	LR	0.134	5,847	0.056	0.219	0.713	0.657	MH-1359
1853 1854	LR LR	LR LR	0.327	14,256 9,135	0.136	0.219	0.793	0.657	MH-1011 MH-1359
1855 1856	LR LR	LR LR	0.171 0.272	7,463 11,862	0.071 0.113	0.219 0.219	0.728 0.770	0.657 0.657	MH-1047 MH-1047
1857 1858	LR LR	LR LR	0.145 0.203	6,309 8,829	0.060 0.085	0.219 0.219	0.717 0.742	0.657 0.657	MH-1011 MH-1047
1859 1860	LR LR	LR LR	0.155 0.174	6,738 7,592	0.065	0.219 0.219	0.722 0.730	0.657 0.657	MH-1011 MH-1047
1861	LR	LR	0.218	9,477	0.091	0.219	0.748	0.657	MH-1047
1862 1863	LR LR	LR LR	0.127 0.228	5,524 9,950	0.053	0.219	0.710	0.657	MH-1011 MH-1047
1864 1865	LR LR	LR LR	0.149 0.173	6,489 7,517	0.062	0.219 0.219	0.719 0.729	0.657 0.657	MH-1009 MH-1047
1866 1867	LR LR	LR LR	0.379 0.133	16,510 5,786	0.158 0.055	0.219 0.219	0.815 0.712	0.657 0.657	MH-1359 MH-1011
1868 1869	LR LR	LR LR	0.157 0.169	6,829 7,378	0.065 0.070	0.219 0.219	0.722 0.727	0.657 0.657	MH-1011 MH-1047
1870 1871	LR	LR	0.236	10,288 8,716	0.098	0.219	0.755	0.657	MH-1359 MH-1011
1872	LR	LR	0.128	5,596	0.053	0.219	0.710	0.657	MH-1011
1873 1874	LR LR	LR LR	0.441 0.168	19,210 7,318	0.184	0.219	0.841	0.657	MH-1047 MH-1047
1875 1876	LR LR	LR LR	0.197 0.167	8,595 7,263	0.082	0.219 0.219	0.739 0.727	0.657 0.657	MH-1047 MH-1009
1877	Vacant LR	NC LR	0.196 0.218	8,532 9,516	0.082	0.340 0.219	1.102 0.748	1.020 0.657	MH-1007 MH-1047
1878		LR	0.259	11,280	0.108	0.219	0.765	0.657	MH-1047
1879	LR LR		0.127	5.527	0.053	0.219	0.710	0.657	MH-1011
1879 1880 1881	LR LR	LR LR	0.127 0.157 0.122	5,527 6,850 5,326	0.053 0.065 0.051	0.219	0.710	0.657 0.657 0.657	MH-1011 MH-1047 MH-1011
1879 1880 1881 1882 1883	LR LR LR LR	LR LR LR LR	0.157 0.122 0.162	6,850 5,326 7,060	0.065 0.051 0.068	0.219 0.219 0.219	0.722 0.708 0.725	0.657 0.657 0.657	MH-1047 MH-1011 MH-1047
1879 1880 1881 1882	LR LR LR	LR LR LR	0.157 0.122	6,850 5,326	0.065 0.051	0.219 0.219	0.722 0.708	0.657 0.657	MH-1047 MH-1011

			Attri	butes of parcel_load	0				
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
1888	LR	LR	0.102	4,456	0.043	0.219	0.700	0.657	MH-1011
1889	LR	LR	0.154	6,718	0.064 0.084	0.219	0.721	0.657	MH-1047
1890	LR	LR	0.201	8,749		0.219	0.741	0.657	MH-1047
<u>1891</u>	LR	LR	0.110	4,772	0.046	0.219	0.703	0.657	MH-1011
1892	LR	LR	0.215	9,370		0.219	0.747	0.657	MH-1047
1893	LR	LR	0.163	7,095	0.068	0.219	0.725	0.657	MH-1011
1894	LR	LR	0.256	11,170	0.107	0.219	0.764	0.657	MH-1047
1895 1896	LR	LR LR	0.165	7,192 6,851	0.069	0.219	0.726	0.657 0.657	MH-1009 MH-1047
1897 1898	LR Vacant	LR LR	0.133 0.591	5,815 25,762	0.055	0.219	0.712	0.657	MH-1009 MH-1047
1899	LR	LR	0.212	9,221	0.088	0.219	0.745	0.657	MH-1009
1900	LR	LR	0.151	6,597	0.063	0.219	0.720	0.657	MH-1047
1901	LR	LR	0.382	16,639	0.159	0.219	0.816	0.657	MH-1009
1902	LR	LR	0.187	8,139	0.078	0.219	0.735	0.657	MH-1047
1903	LR	LR	0.117	5,098		0.219	0.706	0.657	MH-1011
1904	LR	LR	0.145	6,301	0.060	0.219	0.717	0.657	MH-1047
1905	LR	LR	0.149	6,493	0.062	0.219	0.719	0.657	MH-1047
1906 1907	LR	LR LR	0.161 0.200	6,994 8,708	0.067	0.219	0.724 0.740	0.657 0.657	MH-1011 MH-1047
1908	LR LR	LR LR	0.241	10,484	0.100	0.219	0.757	0.657	MH-1011
1909 1910	LR	LR	0.143 0.214	6,238 9,302	0.060	0.219	0.717	0.657 0.657	MH-1047 MH-1047
1911	LR	LR	0.149	6,507	0.062	0.219	0.719	0.657	MH-1047
1912	LR	LR	0.281	12,238		0.219	0.774	0.657	MH-1047
1913	LR	LR	0.159	6,917	0.066	0.219	0.723	0.657	MH-1009
1914	LR	LR	0.255	11,107		0.219	0.763	0.657	MH-1009
1915	LR	LR	0.338	14,723	0.141	0.219	0.798	0.657	MH-1047
1916	LR	LR	0.312	13,591	0.130	0.219	0.787	0.657	MH-1009
1917	LR	LR	0.219	9,553	0.091	0.219	0.748	0.657	MH-1047
1918	LR	LR	0.219	9,555	0.091	0.219	0.748	0.657	MH-1047
1919	LR	LR	0.361	15,731	0.150	0.219	0.807	0.657	MH-1047
1920	LR	LR	0.221	9,617	0.092	0.219	0.749	0.657	MH-1047
1921	LR	LR	0.194	8,440	0.081	0.219	0.738	0.657	MH-1047
1922	LR	LR	0.322	14,037	0.134	0.219	0.791	0.657	MH-1009
1923	LR	LR	0.233	10,165	0.097	0.219	0.754	0.657	MH-1047
1924 1925	LR	LR LR	0.246	10,694 7,690	0.103	0.219	0.760	0.657	MH-1047 MH-1047
1925 1926 1927	LR LR	LR LR	0.232	10,086	0.097	0.219	0.754	0.657	MH-1047 MH-1047 MH-1047
1928	LR	LR	0.259	11,298	0.108	0.219	0.765	0.657	MH-1009
1929	LR	LR	0.212	9,215	0.088	0.219	0.745	0.657	MH-1009
1930	LR	LR	0.477	20,784	0.199	0.219	0.856	0.657	MH-1047
1931	LR	LR	0.197	8,587	0.082	0.219	0.739	0.657	MH-1047
1932	LR	LR	0.178	7,744	0.074	0.219	0.731	0.657	MH-1009
1933 1934	LR	LR LR	0.179	7,785	0.075	0.219	0.732	0.657	MH-1047 MH-1047
1935	LR LR	LR	0.231	10,071	0.096	0.219	0.753	0.657	MH-1047
1936	LR	LR	0.322	14,027	0.134	0.219	0.791	0.657	MH-1047
1937		LR	0.214	9,317	0.089	0.219	0.746	0.657	MH-1009
<u>1938</u>	LR	LR	0.326	14,187	0.136	0.219	0.793	0.657	MH-1047
1939	LR	LR	0.244	10,648		0.219	0.759	0.657	MH-1047
1940	LR	LR	0.217	9,451	0.090	0.219	0.747	0.657	MH-1047
1941	LR	LR	0.422	18,387		0.219	0.833	0.657	MH-1009
1942	LR	LR	0.207	8,997	0.086	0.219	0.743	0.657	MH-1047
1943	LR	LR	0.205	8,950		0.219	0.742	0.657	MH-1047
1944	LR	LR	0.233	10,171	0.097	0.219	0.754	0.657	MH-1009
1945	LR	LR	0.698	30,393	0.291	0.219	0.948	0.657	MH-1047
1946	LR	LR	0.189	8,231	0.079	0.219	0.736	0.657	MH-1047
<u>1947</u>	LR	LR	0.357	15,534	0.149 0.075	0.219	0.806	0.657	MH-1009
1948	LR	LR	0.179	7,816		0.219	0.732	0.657	MH-1047
1949	LR	LR	0.255	11,125	0.106	0.219	0.763	0.657	MH-1047
1950	LR	LR	0.156	6,788		0.219	0.722	0.657	MH-1047
1951	LR	LR	0.208	9,079	0.087	0.219	0.744	0.657	MH-1047
1952	LR	LR	0.149	6,488	0.062	0.219	0.719	0.657	MH-1047
1953 1954	LR	LR LR	0.136	5,922	0.057	0.219	0.714	0.657	MH-1047 MH-1047 MH-1047
1955	LR	LR	0.113 0.314	4,908 13,695	0.131	0.219	0.788	0.657	MH-1047
1956	LR	LR	0.438	19,089	0.183	0.219	0.840	0.657	MH-1047
1957	LR	LR	0.247	10,744	0.103	0.219	0.760	0.657	MH-1047
1958	LR	LR	0.549	23,897	0.229	0.219	0.886	0.657	MH-1047
1959	Vacant	LR	0.580	25,249		0.926	3.020	2.778	MH-1047
1960	LR	LR	0.604	26,315	0.252	0.219	0.909	0.657	MH-1047
1961	LR	LR	0.402	17,528	0.168	0.219	0.825	0.657	MH-1047
1962	Vacant	LI	4.651	202,619	1.938	6.460	21.318	19.380	MH-30094
1963	Vacant	PC/BP	40.493	1,763,867	16.873	70.300	227.773	210.900	MH-30006
1964	HR	HR	2.707	117,911	1.128	5.132	16.524	15.396	MH-1181
1965 1966	PQP Vacant	PQP LR	3.682 4.384	160,384 190,969	<u>1.534</u> <u>1.827</u>	0.000 7.002	1.534 22.833	0.000 21.006	MH-1163 MH-1047
1967	Vacant	LR	0.868	37,812	0.362	1.386	4.520	4.158	MH-1133
1968	Vacant	LR	6.032	262,736	2.514	9.634	31.416	28.902	MH-1047
1969	Vacant	LR	1.691	73,641	0.705	2.701	8.808	8.103	MH-1047
1970	Vacant	LR	1.447	63,025	0.603	2.311	7.536	6.933	MH-1047
1971 1972	Vacant MR	LR MR	1.560 0.225	67,969 9,781	0.650	2.492	8.126 0.658	7.476 0.564	MH-1047 MH-1279
1972 1973 1974	MR Vacant	MR MR	0.220	10,903 10,403	0.104	0.188	0.668	0.564	MH-1279 MH-1259
1975	Vacant	MR	0.242	10,523	0.101	0.466	1.499	1.398	MH-1259
1976 1977	MR MR	MR MR	0.218	9,517 9,212	0.091 0.088	0.188	0.655 0.652	0.564	MH-1259 MH-1259
1978	Vacant	MR	0.217	9,439	0.090	0.418	1.344	1.254	MH-1259
1979	MR	MR	0.208	9,069	0.087	0.188	0.651	0.564	MH-1259
1980	MR	MR	0.195	8,504	0.081	0.188	0.645	0.564	MH-1259
1981	MR	MR	0.184	8,035	0.077	0.188	0.641	0.564	MH-1259
1982 1983	MR	MR MR	0.172	7,504 7,346	0.072	0.188	0.636	0.564	MH-1259 MH-1259
<u>1985</u> 1984 1985	MR MR	MR MR	0.170	7,426	0.071	0.188	0.635	0.564 0.564	MH-1259 MH-1259 MH-1259
1986	MR	MR	0.172	7,505	0.072	0.188	0.636	0.564	MH-1259
1987	MR	MR	0.159	6,921	0.066	0.188	0.630	0.564	MH-1259
1988	MR	MR	0.249	10,867	0.104	0.188	0.668	0.564	MH-1259
1989	MR	MR	0.332	14,445	0.138	0.188	0.702	0.564	MH-1249
1990	MR	MR	0.224	9,752	0.093	0.188	0.657	0.564	MH-1249
1991	Vacant	PC/BP	9.434	410,966	3.931	16.378	53.065	49.134	MH-30006
1992	OS	OS	6.296	274,252	2.624	0.000	2.624	0.000	MH-30006
<u>1993</u> 1994	OS OS	OS OS OS	5.071 7.109	220,890 309,679	2.113	0.000	2.024 2.113 2.962	0.000	MH-1259 MH-1259
1995	Vacant	LR	1.196	52,077	0.498	1.910	6.228	0.000 5.730	MH-1225
1996	OS	OS	26.839	1,169,104	<u>11.184</u>	0.000 0.000	11.184	0.000	MH-1133
1997	OS	OS	3.011	131,162	1.255		1.255	0.000	MH-1243
1998	Vacant	RR	19.831	863,817	8.264	4.338	12.602	13.014	MH-30252
1999	Vacant	RR	27.111	1,180,972	11.297	5.931	17.228	17.793	MH-30252
2000	Vacant Vacant Vacant	PQP PR	30.455 13.236	1,326,608 576,547	12.691 5.515	3.125 1.838	22.066	9.375	MH-30252 MH-30252
2002	LR	LR	2.350	102,374	0.979	3.753	12.238	11.259	MH-2174
2003	Vacant	LR	3.475	151,374	1.448	5.549	18.095	16.647	MH-30252
2004	Vacant	OS	56.008	2,439,727	23.339	0.000	23.339	0.000	MH-30072
2005	Vacant	HSC	1.247	54,321	0.520	2.165	7.015	6.495	MH-30094

				utes of parcel_load	0	· ·			
Parcel ID	Existing Land Use	Buildout Land Use	Area (acres)	Area (ft ²)	l/l (gpm)	Buildout ADWF (gpm)	Buildout PWWF (gpm)	Buildout PDWF (gpm)	Manhole
2006	Vacant	PR	2.919	127,167	1.216	0.405	1.621	0.405	MH-30074
2007	Vacant	OS	39.892	1,737,681	16.623	0.000	16.623	0.000	MH-30062
2008	Vacant	NC	6.070	264,413	2.529	10.538	34.143	31.614	MH-30060
2009	Vacant	LI	3.416	148,795	1.423	4.744	15.655	14.232	MH-30060
2010	Vacant	LI	2.883	125,591	1.201	4.004	13.213	12.012	MH-30060
2011	Vacant	PQP	5.231	227,855	2.180	2.307	9.101	6.921	MH-2188
2012	Vacant	HR	5.229	227,779	2.179	19.609	61.006	58.827	MH-30116
2013	Vacant	HR	1.127	49,089	0.470	4.226	13.148	12.678	MH-30120
2014	HSC	HSC	0.844	36,776	0.352	1.465	4.747	4.395	MH-30094
2015	Vacant	CBD	5.119	223,001	2.133	12.442	39.459	37.326	MH-2262
2016	Vacant	LI	6.771	294,933	2.821	9.404	31.033	28.212	MH-30084
2017	Vacant	LR	24.765	1,078,768	10.320	39.555	128.985	118.665	MH-30082
2018	Vacant	LR	10.102	440,042	4.210	16.135	52.615	48.405	MH-2262
2019	MR	MR	0.166	7,251	0.069	0.188	0.633	0.564	MH-2262
2020	MR	MR	0.169	7,361	0.070	0.188	0.634	0.564	MH-2262
2021	MR	MR	0.169	7,373	0.070	0.188	0.634	0.564	MH-2262
2022	MR	MR	0.170	7,397	0.071	0.188	0.635	0.564	MH-2262
2023	MR	MR	0.173	7,541	0.072	0.188	0.636	0.564	MH-2262
2024	MR	MR	0.193	8,397	0.080	0.188	0.644	0.564	MH-2262
2025	MR	MR	0.200	8,732	0.083	0.188	0.647	0.564	MH-2262
2026	MR	MR	0.227	9,876	0.095	0.188	0.659	0.564	MH-2262
2027	Vacant	PC	6.018	262,130	2.508	10.448	33.852	31.344	MH-30104
2028 2029	Vacant LR	OS LR	<u>13.364</u> 0.731	582,132	5.569	0.000 0.219	5.569 0.962	0.000	MH-30084
				31,852	0.305				MH-1047
2030 2031	Vacant LR	PR LR	4.808 0.339	209,437 14,773	2.003 0.141	0.668 0.219	2.671 0.798	0.668 0.657	MH-30116 MH-1133
2031 2032	LR Vacant	LR MR	0.339			0.219	7.085		MH-1133 MH-30252
2032	Vacant	MR	4.388	54,450 191,143	0.521	6.781	22.171	6.564 20.343	MH-30252 MH-30252
2033	Vacant	LR	4.388	191,143	1.828	3.719	12.285	20.343	MH-30252 MH-30252
2034 2035	Vacant	LR MR	2.707	<u>117,925</u> 80,719	<u> </u>	3.719	12.285	9.843	MH-30252 MH-30252
2035	Vacant	LR	2.874	125,186	1.198	4.813	15.637	9.843	MH-30252 MH-30252
2036	Vacant	MR	2.085	90,838	0.869	3.719	12.026	14.439	MH-30252 MH-30252
2037	Vacant	LR	2.085	90,838	0.869	2.967	9.675	8.901	MH-30252 MH-2346
2038	MR	MR	0.242	10,549	0.774	0.188	0.665	0.564	MH-2346 MH-2094
2039	MR	MR	0.242	9,032	0.086	0.188	0.650	0.564	MH-2094 MH-2094
2040	MR	MR	0.174	7,589	0.088	0.188	0.637	0.564	MH-2094 MH-2094
2041	MR	MR	0.169	7,357	0.073	0.188	0.634	0.564	MH-2094 MH-2094
2042	MR	MR	0.211	9,183	0.070	0.188	0.652	0.564	MH-2094 MH-2094
2044	MR	MR	0.373	16,227	0.147	0.188	0.002	0.564	MH-2094
2045	MR	MR	0.213	9,285	0.089	0.188	0.653	0.564	MH-2094
2046	MR	MR	0.134	5,829	0.056	0.188	0.620	0.564	MH-2094
2047	MR	MR	0.129	5,628	0.054	0.188	0.618	0.564	MH-2094
2048	MR	MR	0.147	6,425	0.061	0.188	0.625	0.564	MH-2094
2049	MR	MR	0.133	5,805	0.055	0.188	0.619	0.564	MH-2094
2050	MR	MR	0.144	6,274	0.060	0.188	0.624	0.564	MH-2094
2051	MR	MR	0.141	6,142	0.059	0.188	0.623	0.564	MH-2094
2052	MR	MR	0.144	6,271	0.060	0.188	0.624	0.564	MH-2094
2053	MR	MR	0.135	5,862	0.056	0.188	0.620	0.564	MH-2094
2054	MR	MR	0.142	6,178	0.059	0.188	0.623	0.564	MH-2094
2055	MR	MR	0.144	6,263	0.060	0.188	0.624	0.564	MH-2094
2056	MR	MR	0.141	6,131	0.059	0.188	0.623	0.564	MH-2094
2057	MR	MR	0.142	6,192	0.059	0.188	0.623	0.564	MH-2094
2058	MR	MR	0.169	7,350	0.070	0.188	0.634	0.564	MH-2094
2059	MR	MR	0.153	6,683	0.064	0.188	0.628	0.564	MH-2094
2060	MR	MR	0.201	8,772	0.084	0.188	0.648	0.564	MH-2094
2061	MR	MR	0.143	6,211	0.060	0.188	0.624	0.564	MH-2094
2062	MR	MR	0.172	7,495	0.072	0.188	0.636	0.564	MH-2094
2063	MR	MR	0.200	8,727	0.083	0.188	0.647	0.564	MH-2094
2064	MR	MR	0.172	7,472	0.072	0.188	0.636	0.564	MH-2094
2065	Vacant	LR	2.797	121,816	1.165	3.938	12.979	11.814	MH-2346
2066	Vacant	LR	3.101	135,062	1.292	3.938	13.106	11.814	MH-2346
2067	Vacant	LR	4.607	200,687	1.920	5.688	18.984	17.064	MH-30252
2068	Vacant	LR	3.316	144,461	1.382	5.031	16.475	15.093	MH-30252
2069	Vacant	LR	5.216	227,220	2.173	6.781	22.516	20.343	MH-30252
2070	Vacant	LR	2.154	93,807	0.897	3.063	10.086	9.189	MH-30252
2071	Vacant	LR	24.443	1,064,742	10.140	38.865	126.735	116.595	MH-30034
2072	Vacant	LR	2.827	123,134	1.178	4.514	14.720	13.542	MH-30252
2073	Vacant	LR	1.247	54,303	0.520	1.531	5.113	4.593	MH-30252
2074	Vacant	MHR	1.080	47,037	0.450	2.025	6.525	6.075	MH-2346
2075	PQP	PQP	12.384	539,439	5.160	12.500	42.660	37.500	MH-2354
2076	Vacant	MHR	1.633	71,148	0.680	3.062	9.866	9.186	MH-2346
2077	MHR	MHR	7.335	319,514	3.120	8.563	28.809	25.689	MH-2084
2078	Vacant	LR	2.786	121,375	1.161	2.188	7.725	6.564	MH-30252
2079	Vacant	LR	2.786	121,375	1.161	2.625	9.036	7.875	MH-30252
2080	Vacant	MR	1.247	54,300	0.520	1.750	5.770	5.250	MH-30252
2081	Vacant	LR	3.876	168,850	1.615	4.375	14.740	13.125	MH-30252
2082	Vacant	LR	2.097	91,348	0.874	3.281	10.717	9.843	MH-30252
2083	Vacant	LR	2.607	113,546	1.086	3.938	12.900	11.814	MH-30252
2084	Vacant	LR	2.607	113,546	1.086	3.938	12.900	11.814	MH-30252
2085	Vacant	LR	2.239	97,514	0.933	2.625	8.808	7.875	MH-30252
2086	Vacant	LR	1.054	45,934	0.439	1.313	4.378	3.939	MH-30252
2087	MR	MR	0.173	7,524	0.072	0.188	0.636	0.564	MH-2094
2088	Vacant	LR	2.698	117,504	1.124	3.500	11.624	10.500	MH-30252
2089	Vacant	PR	8.920	388,565	3.717	1.239	4.956	1.239	MH-2354
2090	Vacant	MR	1.006	43,817	0.419	1.531	5.012	4.593	MH-30252
2091	Vacant	LR	2.926	127,459	1.219	2.406	8.437	7.218	MH-30252
2092	Vacant	LR	1.231	53,623	0.513	1.969	6.420	5.907	MH-30252
2093	Vacant	MR	3.213	139,961	1.339	5.250	17.089	15.750	MH-30252
2094	Vacant	LR	3.234	140,862	1.348	5.165	16.843	15.495	MH-30132
2005	Vacant	MHD	7 703	330 /77	3 2 2 2 7	14 522	46 703	13 566	MH-30080

2095 Vacant MHR 7.793 339,477 3.227 14.522 46.793 43.566 MH-30080	7.793 339,477 3.227 14.522		339,477	7.793	MHR	Vacant	2095
---	----------------------------	--	---------	-------	-----	--------	------

Appendix B_Attributes of WINTERS_PIPES.shp	Appendix B	Attributes	of WINTERS	PIPES.shp
--	------------	------------	------------	-----------

	Upstream	Downstream	Land	Diament	Deverter	11	Description
Pipe ID	Invert	Invert	Length	Diameter	Roughness	Upstream	Downstream
•	(ft)	(ft)	(ft)	(in)	Coefficient	Manhole	Manhole
SP-1002	134.500	132.600	482	10	0.013	MH-1005	MH-1003
SP-1004	132.600	131.000	404	10	0.013	MH-1003	MH-1039
SP-1032	134.050	129.900	553	6	0.013	MH-1011	MH-1115
SP-1034	134.050	131.580	494	6	0.013	MH-1009	MH-1117
SP-1036	133.100	130.010	553	6	0.013	MH-1359	MH-1119
SP-1038	129.900	129.200	260	6	0.013	MH-1115	MH-1123
SP-1040	129.200	127.920	313	6	0.013	MH-1123	MH-1045
SP-1042	129.920	129.400	151	6	0.013	MH-1045	MH-1059
SP-1044	131.580	130.370	301	6	0.013	MH-1117	MH-1121
SP-1046	130.370	129.100	310	6	0.013	MH-1121	MH-1061
SP-1048	130.000	128.410	568	6	0.013	MH-1119	MH-1073
SP-1054	128.400	125.660	467	6	0.013	MH-1073	MH-1055
SP-1060	129.100	126.820	466	6	0.013	MH-1061	MH-1049
SP-1066	125.600	123.130	469	6	0.013	MH-1055	MH-1145
SP-1068	126.820	124.531	467	6	0.013	MH-1049	MH-1141
SP-1074	124.320	121.830	470	8	0.013	MH-1079	MH-1137
SP-1078	123.100	120.330	468	6	0.013	MH-1145	MH-1217
SP-1080	120.300	117.500	464	6	0.013	MH-1217	MH-1201
SP-1082	121.810	119.600	471	6	0.013	MH-1137	MH-1215
SP-1084	124.530	120.430	466	6	0.013	MH-1141	MH-1219
SP-1086	122.830	120.830	469	6	0.013	MH-1129	MH-1221
SP-1088	120.830	120.320	165	10	0.013	MH-1221	MH-1219
SP-1112	129.750	127.610	411	6	0.013	MH-1125	MH-1127
SP-1114	126.430	124.340	464	6	0.013	MH-1047	MH-1133
SP-1116	127.610	124.870	464	6	0.013	MH-1127	MH-1131
SP-1118	125.560	123.280	466	6	0.013	MH-1059	MH-1051
SP-1120	123.280	122.830	461	6	0.013	MH-1051	MH-1129
SP-1124	124.340	122.480	465	6	0.013	MH-1133	MH-1225
SP-1132	122.480	121.980	151	6	0.013	MH-1225	MH-1223
SP-1134	124.870	121.980	466	6	0.013	MH-1131	MH-1223
SP-1138	121.980	120.830	334	8	0.013	MH-1223	MH-1221
SP-1142	120.290	118.560	467	10	0.013	MH-1219	MH-1203
SP-1146	118.570	117.720	303	18	0.013	MH-1203	MH-1201
SP-1148	117.300	116.910	307	18	0.013	MH-1201	MH-1199
SP-1150	116.960	116.050	338	18	0.013	MH-1199	MH-1157
SP-1152	119.580	117.410	461	6	0.013	MH-1215	MH-1199
SP-1156	121.630	120.351	512	12	0.013	MH-1245	MH-1209
SP-1172	112.960	112.460	185	18	0.013	MH-1165	MH-1243
SP-1174	113.140	113.025	50	18	0.013	MH-1163	MH-1165
SP-1176	113.709	113.147	312	18	0.013	MH-1209	MH-1163
SP-1178	114.115	113.710	311	18	0.013	MH-1207	MH-1209
SP-1180	114.390	114.120	305	18	0.013	MH-1205	MH-1207
SP-1182	114.800	114.410	305	18	0.013	MH-1191	MH-1205
SP-1184	120.110	119.410	285	10	0.013	MH-1343	MH-1697
SP-1192	118.910	118.670	261	12	0.013	MH-1315	MH-1277
SP-1218 SP-1220	118.670	118.180	171 182	12 12	0.013	MH-1277	MH-1357
SP-1220 SP-1230	118.180 117.880	117.880 117.610	182	12	0.013	MH-1357 MH-1279	MH-1279 MH-1285
SP-1230 SP-1242	117.610	117.610	115	12	0.013	MH-1279 MH-1285	MH-1285 MH-1259
SP-1242 SP-1262	117.010	115.940	325	8	0.013	MH-1265 MH-1183	MH-1259 MH-1169
SP-1262 SP-1268	117.170	116.810	282	0 12	0.013	MH-1259	MH-11249
SP-1200 SP-1276	116.810	116.490	127	12	0.013	MH-1259 MH-1249	MH-1249 MH-1247
SP-1278	116.490	116.230	101	12	0.013	MH-1249 MH-1247	MH-1247 MH-1169
SP-1278 SP-1280	115.580	114.864	356	12	0.013	MH-1247 MH-1169	MH-1171
SP-1280 SP-1282	114.860	114.622	121	10	0.013	MH-1171	MH-1175
SP-1282 SP-1284	114.620	114.022	235	10	0.013	MH-1175	MH-1173 MH-1181
SP-1286	114.620	113.640	235	10	0.013	MH-1175 MH-1181	MH-1165
SP-1286 SP-1288	131.000	130.290	256	10	0.013	MH-1181 MH-1039	MH-1165 MH-1353
SP-1200 SP-1290	130.290	130.290	330	10	0.013	MH-1039 MH-1353	MH-1353 MH-1351
SP-1290 SP-1292	130.290	125.560	1,038	10	0.013	MH-1353 MH-1351	MH-1351 MH-1075
SP-1292 SP-1294	125.560	125.560	219	10	0.013	MH-1351 MH-1075	MH-1075 MH-1093
36-1294			219	10	0.013	MH-1075 MH-1093	MH-1093 MH-1091
SD-1206					0.015	1011-1020	1011-1091
SP-1296 SP-1298	124.550 126.930	124.445 124.700	30	8	0.013	MH-1089	MH-1091

P:\A. Projects\0098-01 Winters Water and Sewer MP\C. Sewer Master Plan\8. Revised Sewer Master Plan\Appendices\Appendix B_Attributes of WINTERS_PIPES.shp

Appendix B_Attributes of WINTERS_PIPES.shp	Appendix B	Attributes	of WINTERS	PIPES.shp
--	------------	------------	------------	-----------

	Upstream	Downstream				•• •	
Pipe ID	Invert	Invert	Length	Diameter	Roughness	Upstream	Downstream
•	(ft)	(ft)	(ft)	(in)	Coefficient	Manhole	Manhole
SP-1302	123.860	122.210	472	10	0.013	MH-1097	MH-1149
SP-1306	122.200	120.541	474	10	0.013	MH-1149	MH-1161
SP-1308	120.540	119.040	429	10	0.013	MH-1161	MH-1155
SP-1310	119.030	118.890	41	10	0.013	MH-1155	MH-1157
SP-1312	116.000	115.473	439	18	0.013	MH-1157	MH-1193
SP-1314	115.470	115.040	315	18	0.013	MH-1193	MH-1189
SP-1316	115.030	114.890	101	18	0.013	MH-1189	MH-1191
SP-1318	136.500	136.435	35	8	0.013	MH-1007	MH-1005
SP-1320	136.530	135.430	499	8	0.013	MH-1007	MH-1001
SP-1322	135.440	134.430	529	8	0.013	MH-1001	MH-1355
SP-1324	134.450	133.380	510	8	0.013	MH-1355	MH-1349
SP-1326	133.120	131.370	240	8	0.013	MH-1349	MH-1347
SP-1328	131.360	128.174	778	8	0.013	MH-1347	MH-1081
SP-1330	128.170	126.970	251	8	0.013	MH-1081	MH-1089
SP-1332	128.170	125.560	30	6	0.013	MH-1081	MH-1075
SP-1334	127.070	126.002	218	8	0.013	MH-1089	MH-1095
SP-1336	126.000	124.910	210	8	0.013	MH-1095	MH-1153
SP-1338	124.900	123.540	273	8	0.013	MH-1153	MH-1147
SP-1340	123.530	121.160	474	8	0.013	MH-1147	MH-1159
SP-1342	121.160	119.470	457	8	0.013	MH-1159	MH-1157
SP-1344	123.540	122.210	30	6	0.013	MH-1147	MH-1149
SP-1346	120.400	118.400	330	8	0.013	MH-1185	MH-1187
SP-1348	118.400	115.900	194	8	0.013	MH-1187	MH-1191
SP-2002	147.290	146.190	275	8	0.013	MH-2060	MH-2062
SP-2004	146.190	145.470	224	8	0.013	MH-2062	MH-2064
SP-2006	145.470	144.840	197	8	0.013	MH-2064	MH-2028
SP-2020	144.840	143.930	261	8	0.013	MH-2028	MH-2016
SP-2056	143.930	143.690	79	8	0.013	MH-2016	MH-2088
SP-2058	143.690	142.500	382	8	0.013	MH-2088	MH-2090
SP-2060	142.500	141.000	498	8	0.013	MH-2090	MH-2092
SP-2062	141.000	139.400	461	8	0.013	MH-2092	MH-2094
SP-2088	139.400	139.100	120	8	0.013	MH-2094	MH-2082
SP-2090	139.100	138.390	125	8	0.013	MH-2082	MH-2084
SP-2092	138.390	137.750	320	8	0.013	MH-2084	MH-2106
SP-2094	137.750	136.910	420	8	0.013	MH-2106	MH-2052
SP-2100 SP-2104	136.910 136.700	136.700	105 136	8	0.013	MH-2052 MH-2054	MH-2054 MH-1007
		136.500	410		0.013	MH-2054 MH-2346	
SP-2106	127.340	125.890		8	0.013		MH-30252
SP-2108	130.180	127.440	366	8	0.013	MH-2342	MH-2346
SP-2112 SP-2154	131.590 133.690	130.280 131.690	375 400	o 8	0.013	MH-2340 MH-2302	MH-2342 MH-2340
SP-2154 SP-2156	120.490	120.090	400 115	0 8	0.013	MH-2302 MH-2298	WW-1003
SP-2150 SP-2158	117.000	137.000	3,640	8	100.000	MH-2300	MH-2302
SP-2156 SP-2162	133.690	131.450	<u>3,040</u> 45	10	0.013	MH-2300 MH-2302	MH-1693
SP-2162 SP-2170	131.640	131.450	270	6	0.013	MH-2302 MH-2174	MH-2172
SP-2170 SP-2172	131.040	130.560	270	6	0.013	MH-2174 MH-2172	MH-2172 MH-2164
SP-2172 SP-2174	130.560	128.670	265	8	0.013	MH-2172 MH-2164	MH-2170
SP-2174 SP-2176	128.670	122.860	263	8	0.013	MH-2170	MH-2170 MH-2142
SP-2176 SP-2178	127.500	122.800	697	6	0.013	MH-2366	MH-1153
SP-2176 SP-2180	127.500	124.910	660	6	0.013	MH-2366	MH-2142
SP-2180	140.380	135.890	175	10	0.013	MH-2354	MH-2352
SP-2186	135.890	132.960	142	10	0.013	MH-2352	MH-2350
SP-2188	132.960	132.900	133	8	0.013	MH-2350	MH-2344
SP-2196	131.590	130.230	365	8	0.013	MH-2178	MH-2282
SP-2200	130.130	129.620	136	8	0.013	MH-2282	MH-2202
SP-2202	129.520	123.804	207	8	0.013	MH-2202	MH-2188
SP-2202	123.320	127.076	485	6	0.013	MH-2188	MH-2192
SP-2204 SP-2206	127.070	125.542	350	6	0.013	MH-2192	MH-2210
SP-2208	125.540	125.060	110	6	0.013	MH-2210	MH-2194
SP-2206	125.050	123.000	163	8	0.013	MH-2194	MH-2154
SP-2228	124.340	124.000	171	8	0.013	MH-2154	MH-2150
SP-2238	123.990	123.450	272	8	0.013	MH-2150	MH-2146
	120.000						
SP-2240	123.450	122.860	246	8	0.013	MH-2146	MH-2142

P:\A. Projects\0098-01 Winters Water and Sewer MP\C. Sewer Master Plan\8. Revised Sewer Master Plan\Appendices\Appendix B_Attributes of WINTERS_PIPES.shp

Appendix B_Attributes of WINTERS_PIPES.shp	Appendix B	Attributes	of WINTERS	PIPES.shp
--	------------	------------	------------	-----------

	Upstream	Downstream	Low oth	Diamonto	Development	11	Deverseters
Pipe ID	Invert	Invert	Length	Diameter	Roughness Coefficient	Upstream Manhole	Downstream
-	(ft)	(ft)	(ft)	(in)	Coefficient	Mannole	Manhole
SP-2274	121.280	121.220	19	8	0.013	MH-2136	MH-2138
SP-2276	121.220	120.170	284	8	0.013	MH-2138	MH-2134
SP-2284	120.166	119.770	110	8	0.013	MH-2134	MH-2126
SP-2292	118.800	116.860	571	8	0.013	MH-2124	MH-2120
SP-2294	116.850	116.300	251	12	0.013	MH-2120	MH-1157
SP-2332	119.880	118.400	505	8	0.013	MH-2262	MH-1187
SP-1001	112.460	109.800	35	18	0.013	MH-1243	MH-30136
SP-1003	131.280	131.000	70	10	0.013	MH-1693	MH-1039
SP-1005	132.190	131.710	133	8	0.013	MH-2344	MH-2178
SP-1007	119.410	118.910	95	10	0.013	MH-1697	MH-1315
SP-1009	119.767	118.800	403	8	0.013	MH-2126	MH-2124
SP-30001	119.000	115.930	511	8	0.013	MH-30010	MH-30006
SP-30003	104.350	101.340	502	12	0.013	MH-30012	WW-30000
SP-30007	115.900	113.710	363	8	0.013	MH-30006	WW-30000
SP-30009	120.790	120.440	139	12	0.013	MH-30004	MH-30002
SP-30011	120.440	119.720	293	12	0.013	MH-30002	MH-30000
SP-30013	119.720	119.170	234	12	0.013	MH-30000	MH-1315
SP-30015	102.000	120.790	363	8	100.000	MH-30014	MH-30004
SP-30017	118.066	117.219	339	10	0.013	MH-30018	MH-30016
SP-30019	117.219	115.697	609	10	0.013	MH-30016	MH-1189
SP-30021	124.390	121.900	626	15	0.013	MH-30024	MH-30026
SP-30023	121.900	119.120	652	15	0.013	MH-30026	MH-30020
SP-30025	115.300	114.370	661	24	0.013	MH-30022	MH-30020
SP-30027	139.010	137.940	434	10	0.013	MH-30028	MH-30030
SP-30031	132.030	129.310	818	8	0.013	MH-30034	MH-30036
SP-30033	129.310	128.060	378	8	0.013	MH-30036	MH-30038
SP-30035	128.060	125.630	731	8	0.013	MH-30038	MH-30040
SP-30037	125.630	124.020	654	10	0.013	MH-30040	MH-30282
SP-30039	138.000	135.600	796	12	0.013	MH-30042	MH-30044
SP-30041	135.570	131.190	627	15	0.013	MH-30044	MH-30112
SP-30049	143.000	141.290	513	8	0.013	MH-30052	MH-30050
SP-30051	141.290	139.010	686	8	0.013	MH-30050	MH-30028
SP-30053	141.000	134.370	1,102	8	0.013	MH-30054	MH-30056
SP-30055	134.360	128.240	1,018	8	0.013	MH-30056	MH-30058
SP-30057	128.230	123.910	720	8	0.013	MH-30058	MH-30060
SP-30059	121.500	119.120	881	8	0.013	MH-30062	MH-30060
SP-30061	123.000	121.600	485	8	0.013	MH-30096	MH-30062
SP-30063	122.500	120.500	741	8		MH-30064	MH-30282
SP-30067 SP-30069	119.100	116.680	692	10 12	0.013	MH-30060	MH-30068
	116.680	112.250	1,265 1,184	12	0.013	MH-30068 MH-30072	MH-30072
SP-30071 SP-30077	112.200	108.000	1,164		0.013	MH-30072 MH-30078	MH-30074
	102.300	101.950		15	0.013		MH-30106
SP-30079 SP-30081	120.500	117.960	1,031 982	10	0.013	MH-30282	MH-30080
SP-30081 SP-30083	120.000 114.900	114.100 111.820	982 513	8	0.013	MH-30082 MH-30084	MH-30078 MH-30086
SP-30083 SP-30085	104.900	102.330	952	15	0.013	MH-30084 MH-30086	MH-30086 MH-30078
	116.500		952 711				
SP-30087		113.870		8	0.013	MH-30088	MH-30090
SP-30089 SP-30091	<u>113.850</u> 110.300	110.330 108.450	953 496	10 10	0.013	MH-30090 MH-30092	MH-30092 MH-30094
SP-30091 SP-30093	108.400	108.450	496 992	10	0.013	MH-30092 MH-30094	MH-30094 MH-30086
SP-30093 SP-30097	134.510	132.030	746	8	0.013	MH-30094 MH-30032	MH-30034
SP-30097 SP-30099	107.900	132.030	217	12	0.013	MH-30032 MH-30074	MH-30034 MH-30098
SP-30099 SP-30101	107.900	107.130	475	12	0.013	MH-30074 MH-30098	MH-30106
SP-30101 SP-30103	117.960	114.990	1,534	12	0.013	MH-30098 MH-30080	MH-30102
SP-30103 SP-30105	117.960	114.990	680	8	0.013	MH-30080 MH-30104	MH-30102 MH-30084
SP-30105 SP-30109	101.900	101.600	113	0 18	0.013	MH-30104 MH-30106	MH-30284
SP-30109 SP-30111	131.180	129.050	535	10	0.013	MH-30106 MH-30112	MH-30284 MH-30110
SP-30111 SP-30113	129.040	129.050	720	15	0.013	MH-30112 MH-30110	MH-30108
SP-30113 SP-30115	129.040	126.370	496	15	0.013	MH-30110 MH-30108	MH-30108 MH-30024
SP-30115 SP-30117	126.370	124.390	496 377	15	0.013	MH-30108 MH-30114	MH-30024 MH-1245
SP-30117 SP-30119			1,162	10		MH-30114 MH-1203	MH-1245 MH-1163
36-30118	118.400	113.150		_	0.013	MH-1203 MH-2192	MH-1163 MH-30124
SD 20121	10/0/6						
SP-30121 SP-30123	127.076 125.216	125.216 123.729	570 455	8	0.013	MH-2192 MH-30124	MH-30124 MH-30122

P:\A. Projects\0098-01 Winters Water and Sewer MP\C. Sewer Master Plan\8. Revised Sewer Master Plan\Appendices\Appendix B_Attributes of WINTERS_PIPES.shp

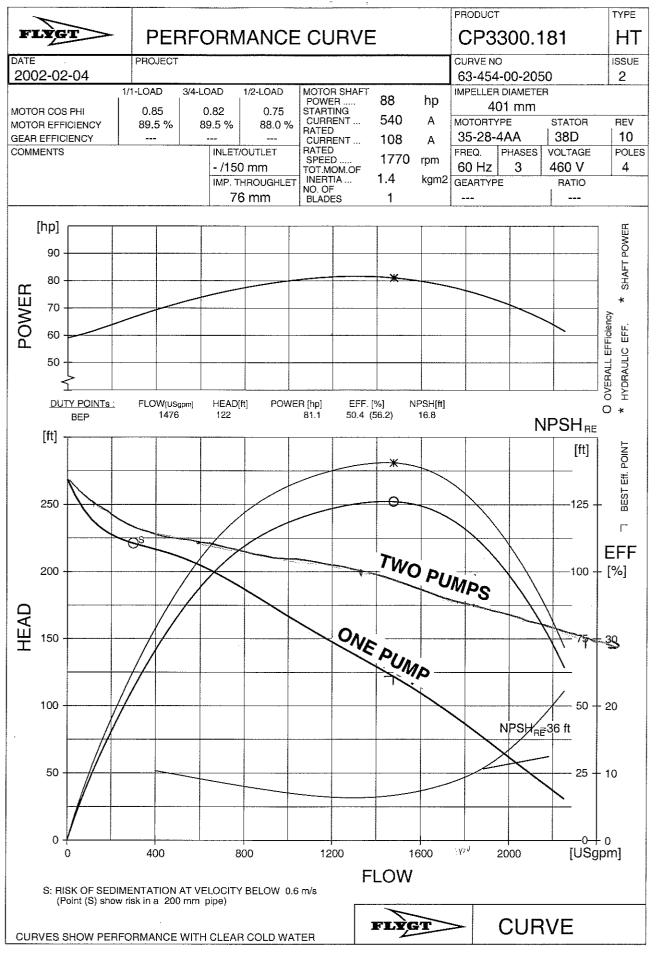
Appendix B_Attributes of WINTERS_PIPES.sh	р
---	---

Appendix B_Attributes of WINTERS_PIPES.shp								
D'a s ID	Upstream	Downstream	Length	Diameter	Roughness	Upstream	Downstream	
Pipe ID	Invert	Invert	(ft)	(in)	Coefficient	Manhole	Manhole	
00.00407	(ft)	(ft)			0.010			
SP-30127	122.885	120.554	714	8	0.013	MH-30120	MH-30118	
SP-30129	120.554	118.786	541	8	0.013	MH-30118	MH-30116	
SP-30131	118.619	118.066	221	10	0.013	MH-30116	MH-30018	
SP-30133	132.733	127.440	667	8	0.013	MH-30126	MH-2346	
SP-30135	139.400	132.733	566	8	0.013	MH-2094	MH-30126	
SP-30137	122.170	120.270	573	8	0.013	MH-30128	MH-30130	
SP-30139	120.270	118.750	457	8	0.013	MH-30130	MH-30132	
SP-30141	118.750	117.890	258	8	0.013	MH-30132	WW-30006	
SP-30143	117.000	122.928	27	8	120.000	MH-30134	MH-30120	
SP-30145	109.800	106.000	104	18	0.013	MH-30136	WW-30008	
SP-30151	107.620	110.620	41	14	110.000	MH-30138	MH-30152	
SP-30159	110.620	122.590	83	14	110.000	MH-30152	MH-30154	
SP-30161	122.590	122.791	502	14	110.000	MH-30154	MH-30150	
SP-30163	122.791	122.917	316	14	110.000	MH-30150	MH-30156	
SP-30165	122.917	123.037	299	14	110.000	MH-30156	MH-30158	
SP-30167	123.037	123.164	319	14	110.000	MH-30158	MH-30160	
SP-30169	123.164	123.206	104	14	110.000	MH-30160	MH-30162	
SP-30171	123.206	124.890	617	14	110.000	MH-30162	MH-30164	
SP-30173	124.890	126.000	559	14	110.000	MH-30164	MH-30166	
SP-30175	126.000	124.270	1,073	14	110.000	MH-30166	MH-30170	
SP-30177	124.270	122.030	351	14	110.000	MH-30170	MH-30168	
SP-30179	122.030	121.430	1,469	14	110.000	MH-30168	MH-30172	
SP-30181	121.430	118.070	334	14	110.000	MH-30172	MH-30174	
SP-30183	118.070	122.770	144	14	110.000	MH-30174	MH-30176	
SP-30185	122.770	124.190	1,169	14	110.000	MH-30176	MH-30178	
SP-30187	124.190	124.790	1,500	14	110.000	MH-30178	MH-30180	
SP-30189	124.790	134.630	610	14	110.000	MH-30180	MH-30182	
SP-30195	134.630	135.560	772	14	110.000	MH-30182	MH-30186	
SP-30197	135.560	133.260	321	14	110.000	MH-30186	MH-30188	
SP-30199	133.260	135.060	501	14	110.000	MH-30188	MH-30250	
SP-30201	136.010	142.200	150	14	110.000	MH-30190	MH-30192	
SP-30203	142.200	145.180	332	14	110.000	MH-30192	MH-30194	
SP-30205	145.180	148.500	367	14	110.000	MH-30194	MH-30196	
SP-30207	148.500	148.750	650	14	110.000	MH-30196	MH-30198	
SP-30209	186.000	181.000	26	18	0.013	MH-30224	MH-30218	
SP-30211	186.000	181.000	20	18	0.013	MH-30222	MH-30220	
SP-30213	148.750	150.000	36	14	110.000	MH-30198	MH-30200	
SP-30215	150.000	170.000	63	14	110.000	MH-30200	MH-30202	
SP-30217	170.000	170.500	554	14	110.000	MH-30202	MH-30202 MH-30204	
SP-30217 SP-30219	170.500	171.300	342	14	110.000	MH-30202	MH-30204 MH-30206	
SP-30213	170.300	177.000	337	14	110.000	MH-30204	MH-30208	
SP-30221 SP-30223	177.000	186.000	766	14	110.000	MH-30208	MH-30210	
SP-30225 SP-30225	186.000	186.000	143	14	110.000	MH-30208	MH-30210 MH-30212	
SP-30225 SP-30227	186.000	186.000	143	14	110.000	MH-30210 MH-30212	MH-30212 MH-30226	
SP-30227 SP-30233	186.000	186.000	16	48	0.013	MH-30212 MH-30226	MH-30226 MH-30222	
SP-30235	186.000	186.000	39 591	48	0.013	MH-30226	MH-30224	
SP-30239 SP-30241	137.940	136.490 136.010		10 14	0.013	MH-30030 MH-30250	MH-30288	
	135.060		258		110.000	MH-30250 MH-30252	MH-30190	
SP-30243	125.890	125.885	1	8	0.013		MH-30286	
SP-30295	114.990	114.720	141	12	0.013	MH-30102	MH-30284	
SP-30299	136.490	134.720	715	10	0.013	MH-30288	MH-30290	
SP-30301	134.720	133.520	621	12	0.013	MH-30290	MH-30292	
SP-30303	133.520	132.050	765	12	0.013	MH-30292	MH-30294	
SP-30305	132.050	131.080	672	15	0.013	MH-30294	MH-30286	

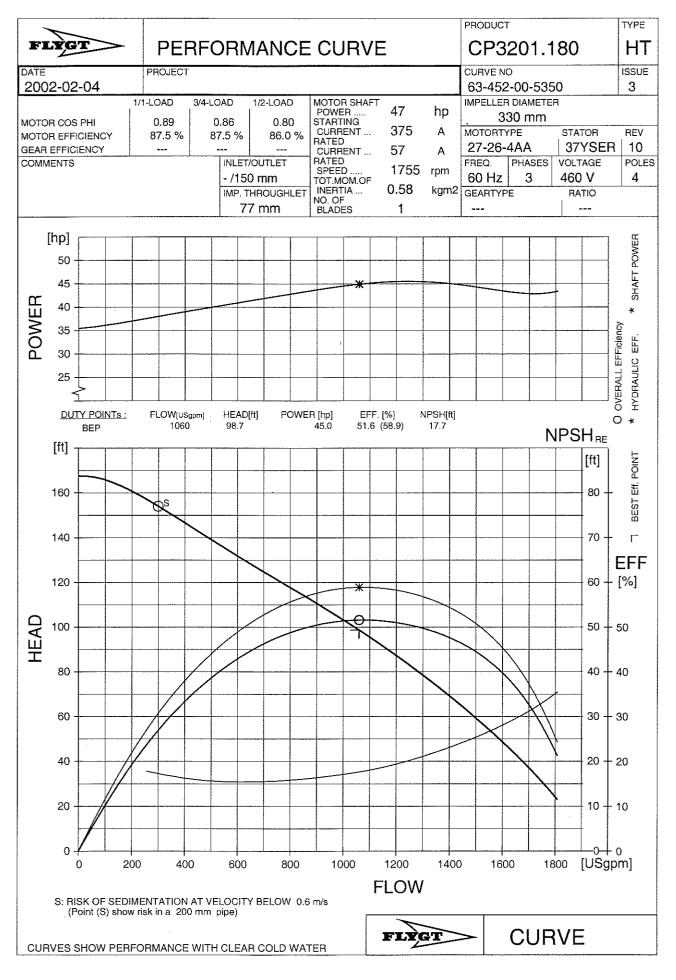
APPENDIX C

H2OMAP WATER FILES (COMPUTER MODEL OF FORCE MAINS) AND MISCELLANEOUS FORCE MAIN MODELING INFO

Pipe ID	Description	Length (ft)	Diameter (in)	Roughness Coefficient	From Node	To Node
11	New Pipe	65	14	100	143	137
13	New Pipe	286	14	100	55	57
15	New Pipe	315	14	100	57	59
17	New Pipe	295	14	100	59	61
19	New Pipe	383	14	100	61	63
21	New Pipe	139	14	100	63	65
23	New Pipe	602	14	100	65	67
25	New Pipe	541	14	100	67	69
27	New Pipe	1,041	14	100	69	71
29	New Pipe	371	14	100	71	73
31	New Pipe	523	14	100	73	77
33	New Pipe	1,075	14	100	77	79
35	New Pipe	371	14	100	79	81
37	New Pipe	131	14	100	81	83
39 41	New Pipe	1,024	14 14	100	83 85	85
41	New Pipe New Pipe	1,362 274	14	100	85 87	145
45	New Pipe	394	14	100 100	89	163 197
43	New Pipe	62	14	100	129	139
49	New Pipe	280	14	100	129	159
51	New Pipe	317	14	100	15	13
53	New Pipe	299	14	100	13	19
55	New Pipe	396	14	100	19	21
57	New Pipe	131	14	100	21	23
59	New Pipe	593	14	100	23	25
61	New Pipe	552	14	100	25	27
63	New Pipe	1,020	14	100	27	29
65	New Pipe	376	14	100	29	31
67	New Pipe	497	14	100	31	75
69	New Pipe	26	18	100	75	33
71	New Pipe	45	12	100	201	47
73	New Pipe	50	12	100	201	51
75	New Pipe	1,532	12	100	47	49
77	New Pipe	1,025	12	100	49	33
79	New Pipe	1,537	12	100	51	53
81	New Pipe	1,022	12	100	53	75
83	New Pipe	1,067	18	100	33	35
85	New Pipe	374	18	100	35	37
87	New Pipe	132	18	100	37	39
89	New Pipe	1,047	18	100	39	41
91	New Pipe	1,388	18	100	41	153
93	New Pipe	271	18	100	43	161
95	New Pipe	388	18	100	45	195
97	New Pipe	58	8	100	207	95
99	New Pipe	529	8	100	95	97
101	New Pipe	786	8	100	97	99
103 105	New Pipe New Pipe	619 667	8 8	100 100	99 101	101 103
105	New Pipe	618	8	100	101	103
107	New Pipe	1,049	8	100	103	105
109	New Pipe	2,604	8	100	105	107
113	New Pipe	63	8	100	209	113
115	New Pipe	529	8	100	113	115
117	New Pipe	750	8	100	115	113

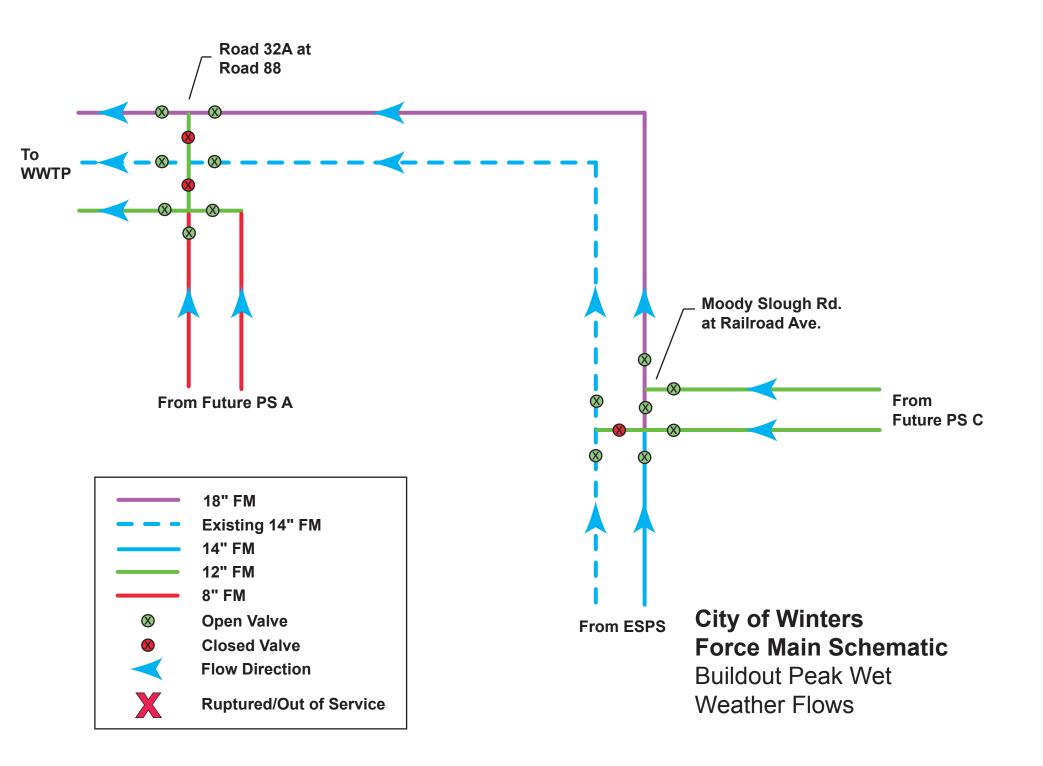

P:\A. Projects\0098-01 Winters Water and Sewer MP\C. Sewer Master Plan\8. Revised Sewer Master Plan\Appendices\Appendix C_Attributes of WINTERS_FMS.shp

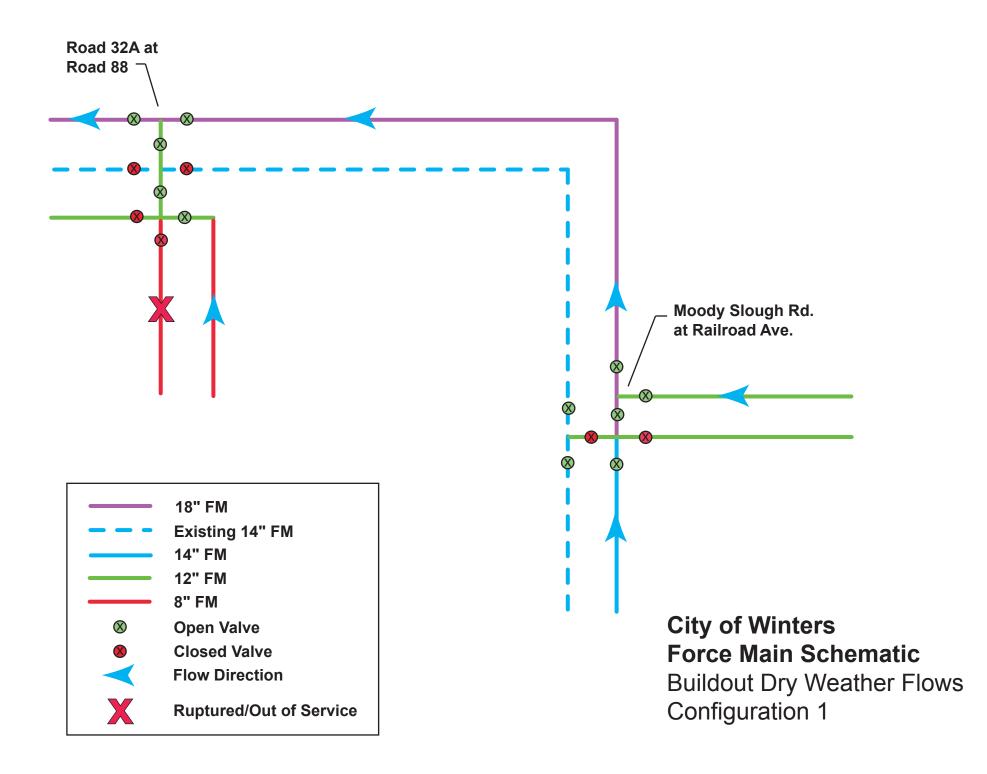
Pipe ID	Description	Length (ft)	Diameter (in)	Roughness Coefficient	From Node	To Node
119	New Pipe	643	8	100	117	119
121	New Pipe	652	8	100	119	121
123	New Pipe	578	8	100	121	123
125	New Pipe	1,078	8	100	123	125
127	New Pipe	2,653	8	100	125	127
129	New Pipe	21	8	100	109	127
131	New Pipe	71	12	100	127	187
133	New Pipe	399	12	100	111	199
137	New Pipe	189	14	100	137	55
139	New Pipe	189	14	100	139	13
141	New Pipe	58	14	100	203	129
143	New Pipe	53	14	100	141	143
145	New Pipe	624	14	100	145	155
147	New Pipe	943	18	100	147	157
149	New Pipe	510	14	100	149	87
151	New Pipe	295	14	100	151	149
153	New Pipe	622	18	100	153	147
155	New Pipe	943	14	100	155	151
157	New Pipe	297	18	100	157	159
159	New Pipe	509	18	100	159	43
161	New Pipe	118	18	100	161	165
163	New Pipe	116	14	100	163	167
165	New Pipe	294	18	100	165	169
167	New Pipe	291	14	100	167	171
169	New Pipe	382	18	100	169	173
171	New Pipe	385	14	100	171	177
173	New Pipe	529	18	100	173	179
177	New Pipe	530	14	100	177	181
179	New Pipe	70	18	100	179	183
181	New Pipe	71	14	100	181	185
183	New Pipe	704	18	100	183	189
185	New Pipe	703	14	100	185	191
187	New Pipe	702	12	100	187	193
189	New Pipe	296	18	100	189	45
191	New Pipe	312	14	100	191	89
193	New Pipe	331	12	100	193	111
195	New Pipe	762	18	100	195	11
197	New Pipe	801	14	100	197	91
199	New Pipe	829	12	100	199	93
207	New Pipe	10	14	100	211	213
209	New Pipe	17	14	100	213	141
211	New Pipe	5	14	100	213	215
213	New Pipe	22	14	100	215	203
219	New Pipe	32	8	100	219	209
221	New Pipe	22	8	100	219	207
223	New Pipe	21	12	100	93	7006
225	New Pipe	14	14	100	91	7006
227	New Pipe	25	18	100	11	7006
229	New Pipe	37	8	100	127	179

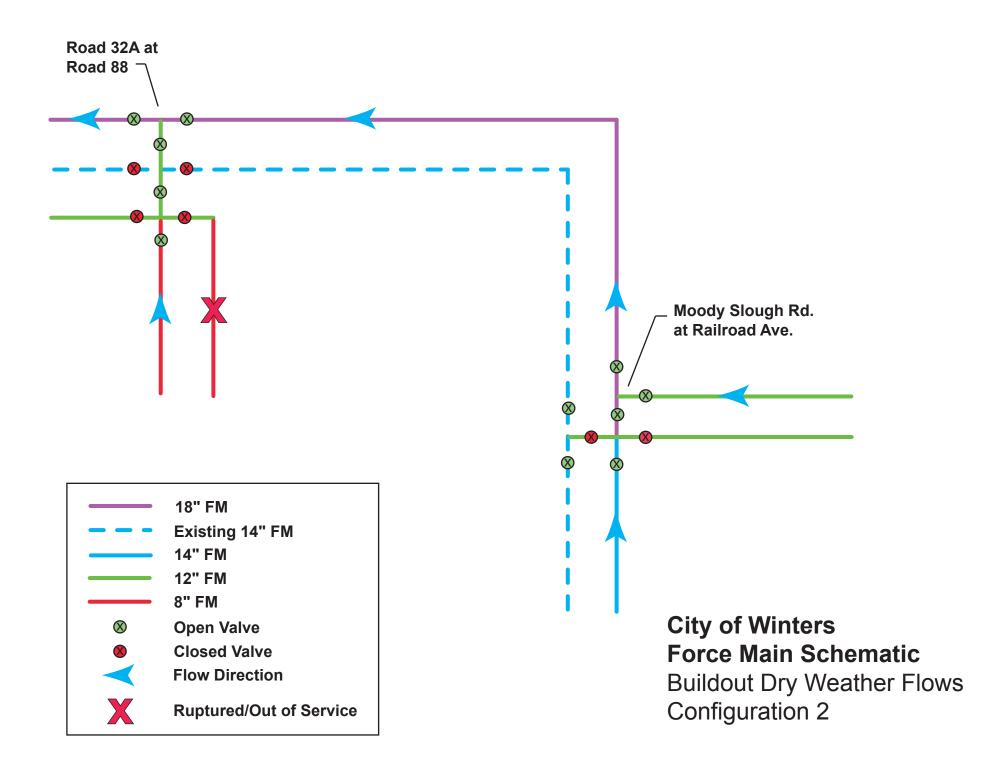

APPENDIX D

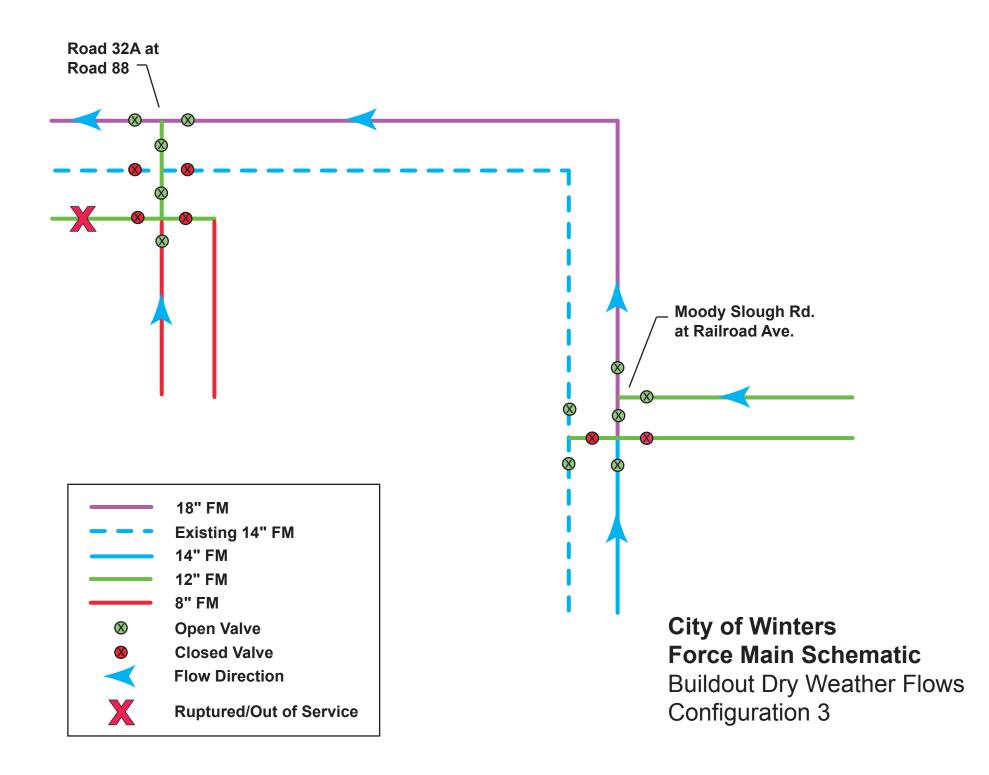
EAST STREET PUMP STATION PUMP CURVES

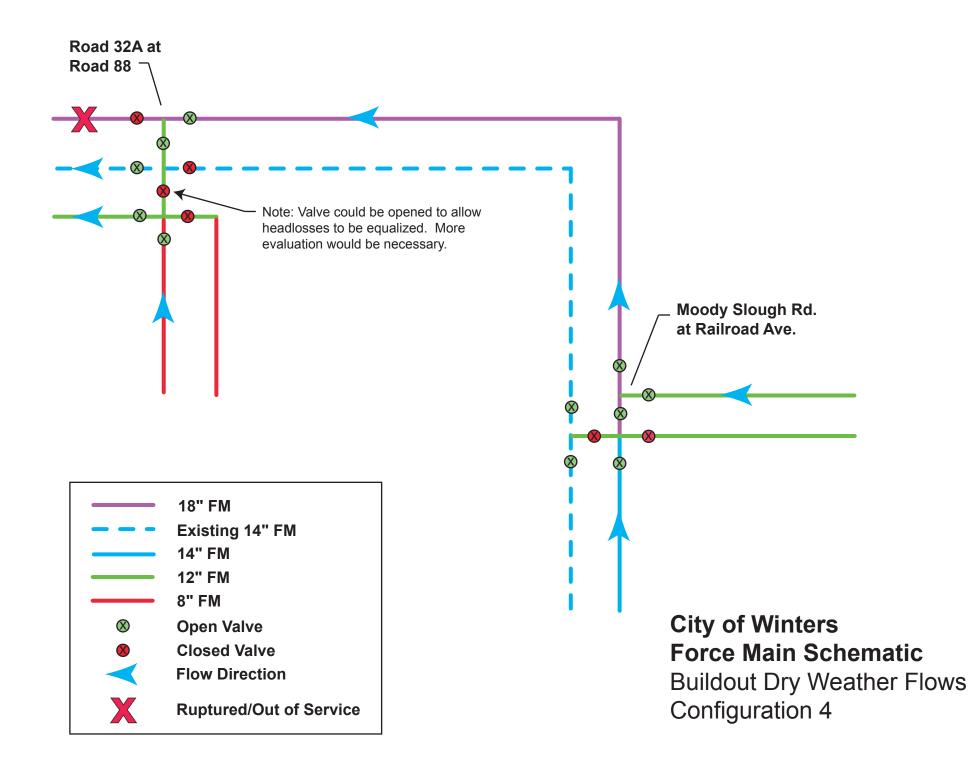
88 hp

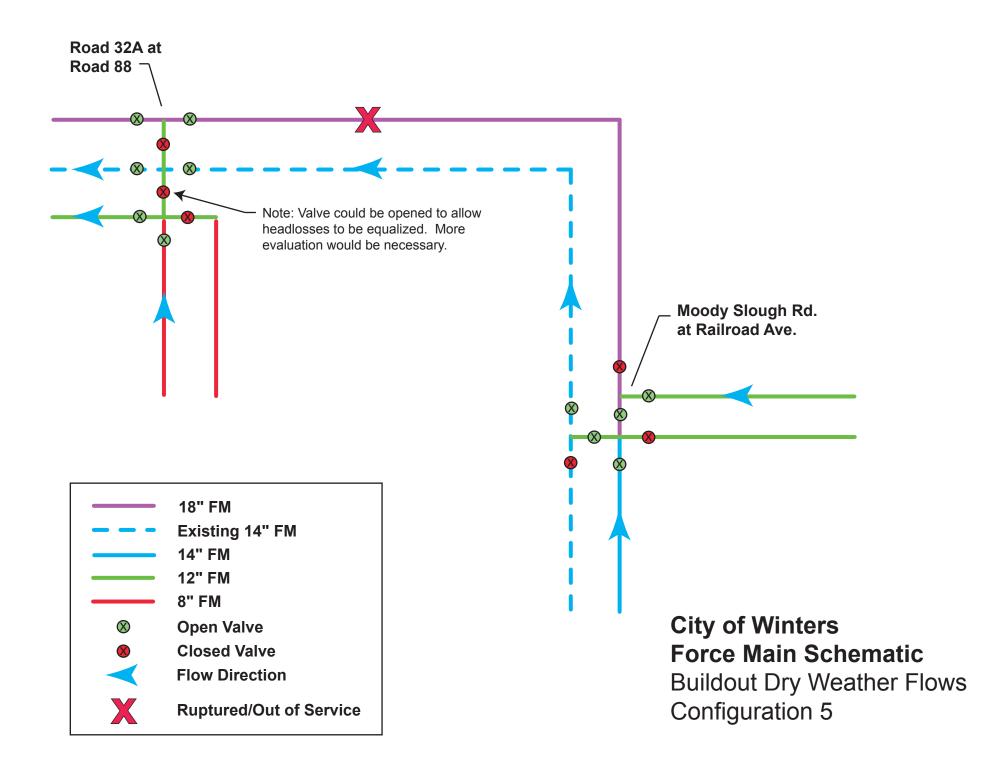

47hp

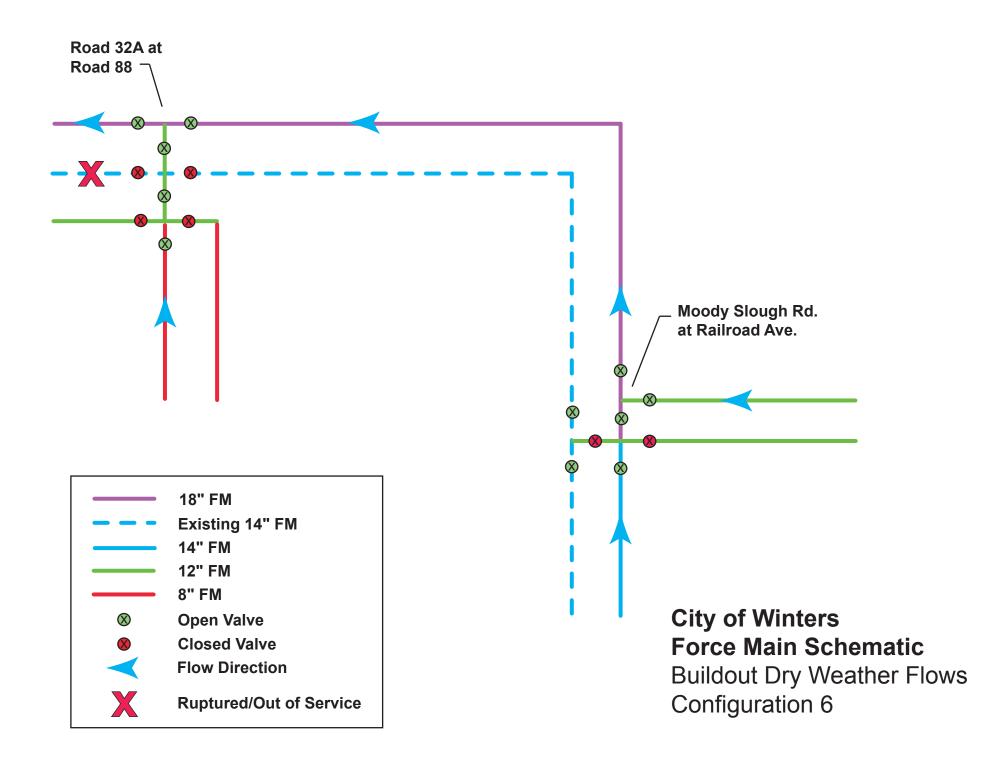


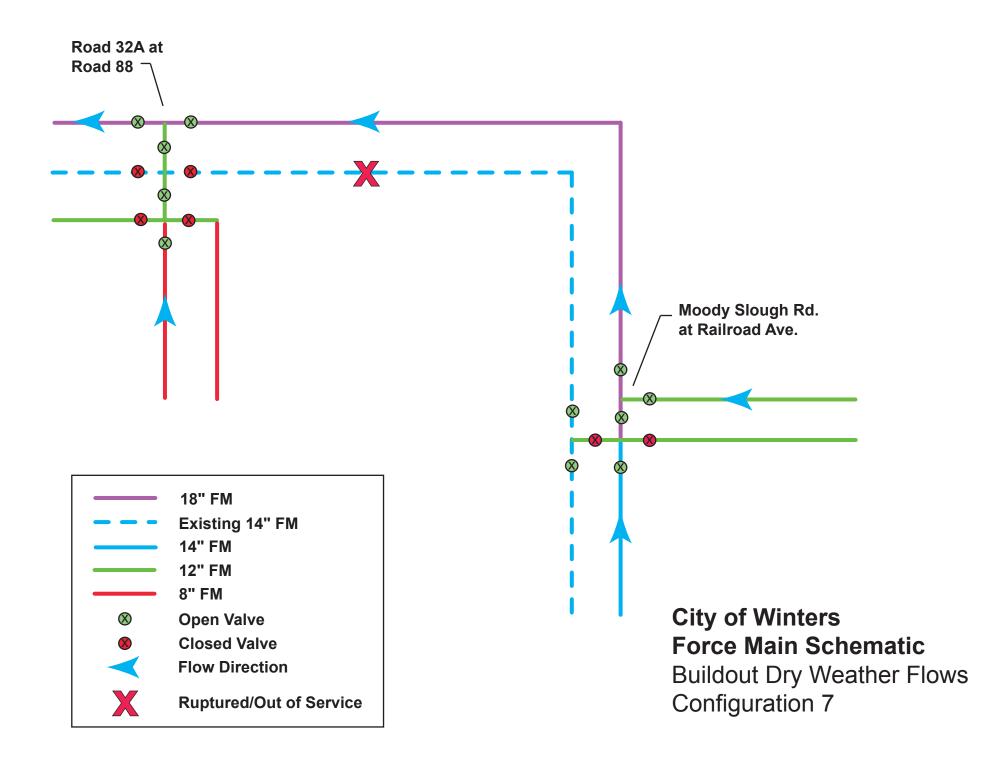

APPENDIX E

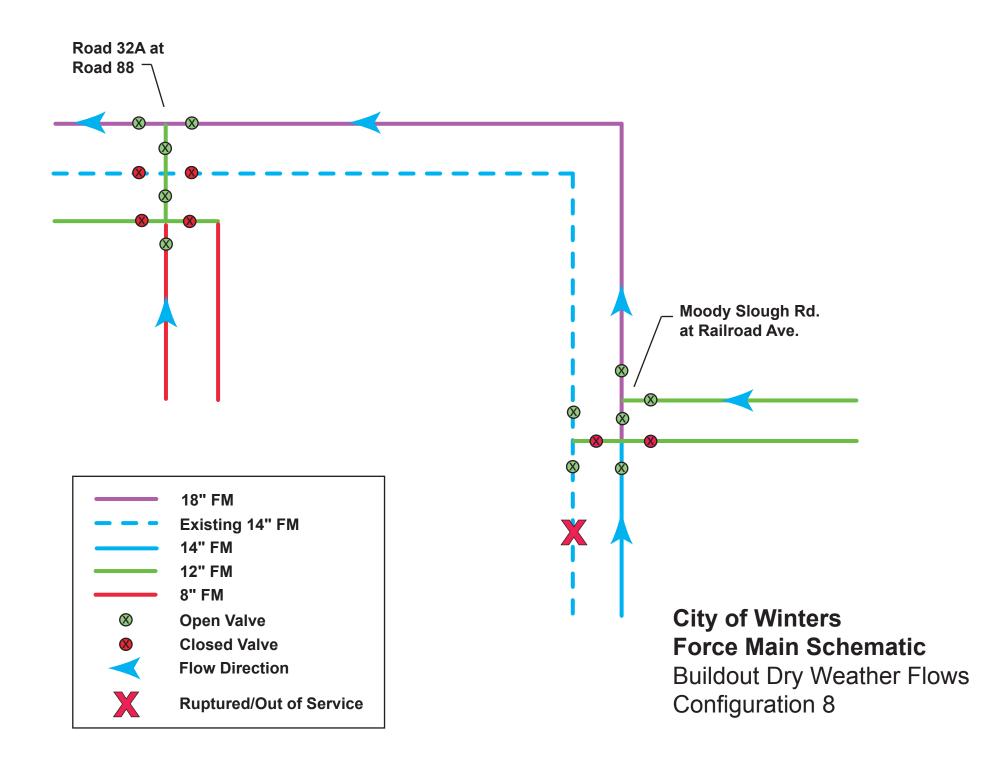

FORCE MAIN VALVING CONFIGURATIONS

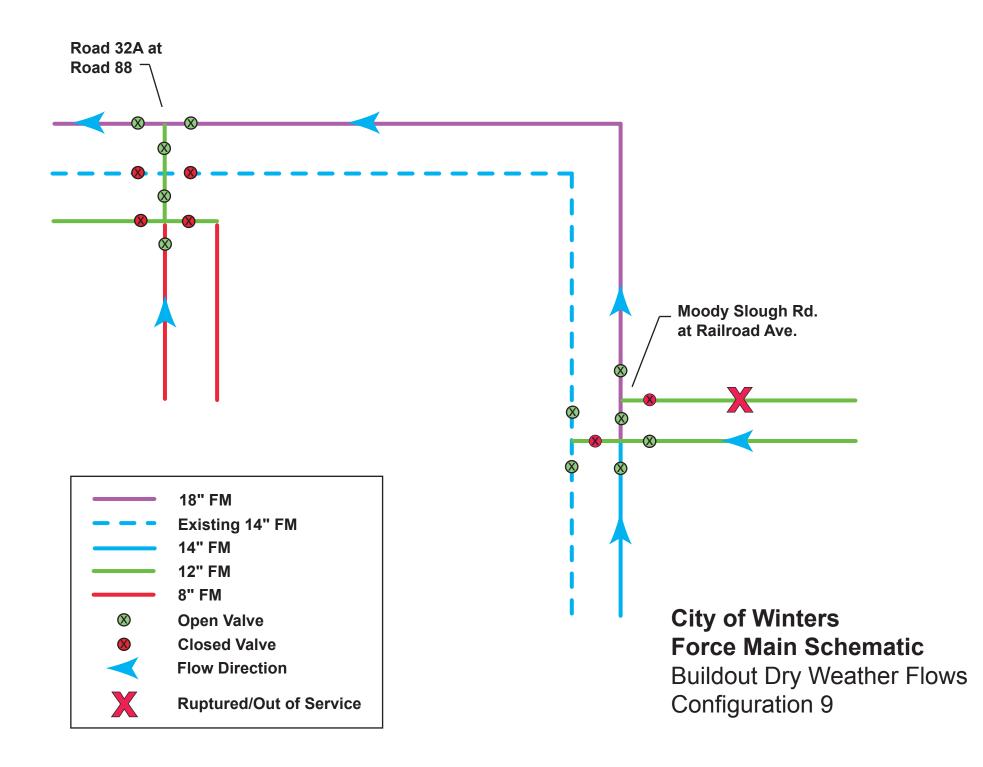

City of Winters 2006 Sewer Collection System Master Plan

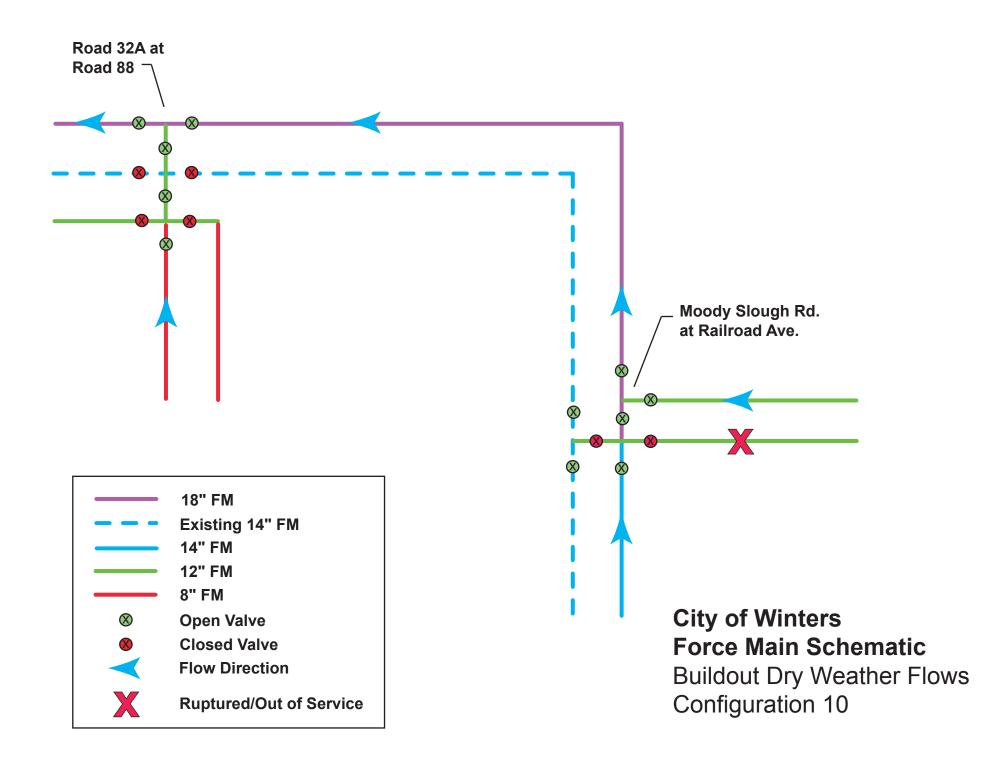


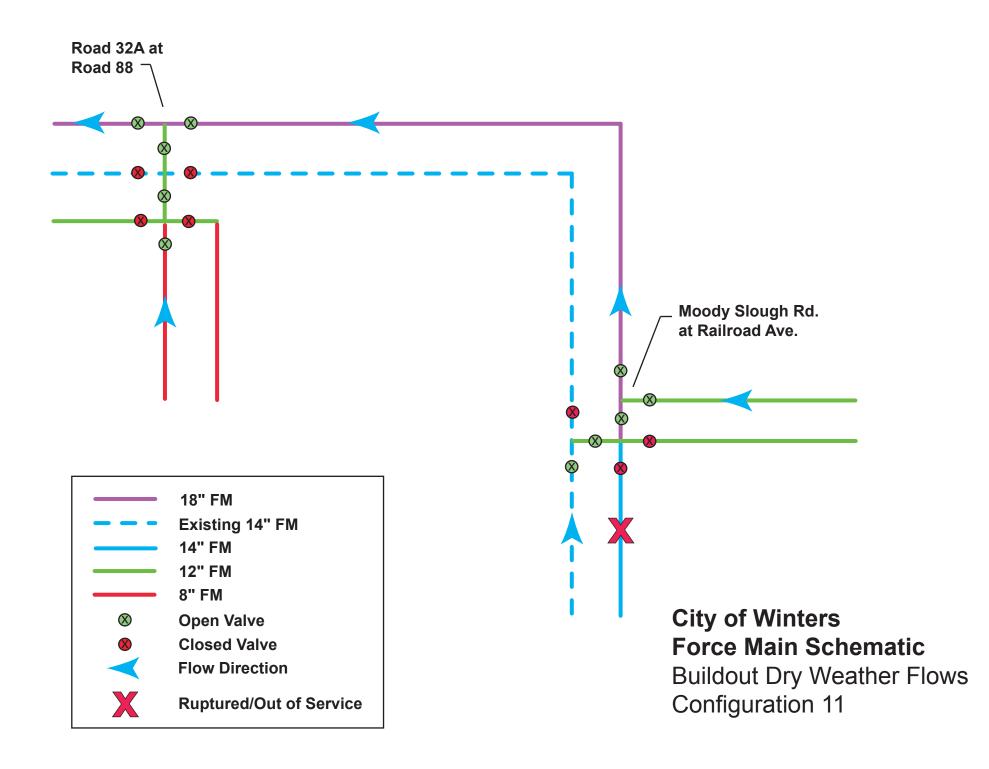












APPENDIX F

TECHNICAL MEMORANDA

Technical Memorandum 1B

City of Winters – Sewer System Master Plan

Subject:	Sewer Collection Design Criteria for Master Planning - FINAL
Prepared For:	Michael Karoly, PE - City of Winters
Prepared By:	Glenn E. Hermanson, P.E.
Reviewed By:	Jeff Lewandowski, P.E., D. Eng.
Date:	August 17, 2004 (FINAL) October 20, 2003 (DRAFT)
Reference:	098.0021

Introduction

This Technical Memorandum (TM) presents the design criteria recommended for use for the Sewer Master Plan for the City of Winters. These criteria will serve as the basis for evaluating the hydraulic adequacy of existing facilities and for establishing the alignment and size of future facilities, including gravity trunk sewers, pump stations, and force mains. Design assumptions that are not required for master planning, but are necessary for cost estimation purposes (e.g., pipe material, thickness of pavement restoration, manhole spacing) will be presented in the TM on Recommended System Improvements. A separate TM will include recommended Design Flow Criteria, including unit flow factors and procedures for calculating peak dry and wet weather design flows.

This TM includes a brief discussion of each of the following items and recommendations for design criteria for the Winters Master Plan.

- A. Manning's 'n' factor
- B. Minimum Pipe Size
- C. Maximum Allowable Flow Depth
- D. Minimum Velocity/Slope
- E. Maximum Velocity
- F. Maximum Collector Sewer Depth
- G. Minimum Pipe Depth
- H. Design Requirements at Increases in Pipe Size
- I. Headloss in Manholes
- J. Hydraulic Design Criteria for Force Mains
- K. Inverted Siphons

Summary of Recommended Master Plan Design Criteria

A summary of the recommended design criteria is presented in Table 1.

Criteria	Recommended Value
Manning's <i>'n'</i>	0.013 for all materials
Minimum Gravity Sewer Pipe Size	8 inches
Maximum Allowable Flow Depth (d/D)	 Under peak design flow conditions: d/D = 0.7 for 8- and 10-inch pipe and 12-inch pipe with service connections d/D = 1.0 for 12-inch (without service connections) and larger pipe.
Minimum Velocity/Slope	 Criteria 1: Minimum design slope selected to provide a minimum velocity of 2 fps for sewers between 8- and 18-inch and a minimum velocity of 3 fps for sewers 39-inch and larger. For sewers between 21- and 36-inch, the minimum slope allows the velocity to transition from 2 fps to 3 fps. Velocities calculated with Manning's 'n' =0.013 and full pipe conditions. See Table 5.
Maximum Velocity	 Criteria 2: Minimum velocity of 2 fps at peak dry weather flow at buildout. 10 fps
Maximum Collector Sewer Depth	8- and 10-inch pipe and 12-inch pipe with service connections have a maximum depth of 16 feet.
Minimum Pipe Depth	 Provide a minimum depth to pipe invert of 7 feet for all gravity sewers including the sewers at the periphery of the system. At least 4 feet of separation between the flow line of creeks and the crown of the sewer at creek crossings.
Increases in Pipe Size	 Match crowns when increasing in pipe size. Set branch sewer elevations 0.1 ft. above the main sewer elevation when the branch sewer is the same size as the main sewer.
Headloss in Manholes	Deflection manholes with deflections greater than 20 degrees are assigned a 0.1-foot drop. Deflections greater than 90 degrees are not allowed.
Force Mains	 Maximum velocity: 8 fps during PWWF at buildout. Minimum velocity: 3.5 fps with one pump running (force mains with 20% slope or less); additional analysis required (force mains with greater than 20% slope) A method to allow dewatering and internal inspection of force mains during summertime flow shall be provided. For short force mains that do not cross railroads, freeways, or rivers, bypass pumping using temporary above ground piping is acceptable. For long force mains, dual force mains are one solution, but other solutions are possible depending on the site. Future inspection requirements: Future inspection will be considered. With no better solution, a second force main will be identified in the master plan after 20 years. Dual force mains would not be required at the initial stage unless low initial flows (and velocities) require dual pipelines to keep grit moving. Pipe friction will be calculated using the Hazen-Williams formula with a roughness coefficient C = 100 for all pipe sizes and materials.

Criteria	Recommended Value
Inverted Siphons	 Avoid inverted siphons whenever possible. Downflow and upflow legs of the siphon have a maximum slope of 15%. Upstream invert elevation will be calculated by adding 12 inches plus the pipe friction to the downstream invert elevation. Pipe friction will be calculated using the Hazen-Williams formula with a roughness coefficient C = 100. Minimum velocity of 3 fps at ADWF during early years of operation Minimum velocity of 4 fps at PDWF during early years of operation. Minimum pipe diameter of 8 inches and minimum of two barrels. The downstream manhole must be located in an easily accessed location and safely accessed (busy street locations are not allowed).

A. Manning's 'n' Factor

Manning's 'n' roughness coefficient is the friction factor utilized in the Manning's Equation for gravity flow to describe the roughness of a particular pipe material or condition. There has been much debate over the idea that the 'n' value of a pipe can change over time as the pipe ages and a slime layer grows on the pipe wall. One side of the debate claims that the roughness or 'n' value of this slime layer is the same whether the slime layer grows on a concrete wall, a vitrified clay wall, or a plastic wall. The other side of this debate proposes that a different 'n' value should be used for different pipe materials, generally ranging from 0.008 for plastic pipe to 0.016 for unlined concrete pipe (Jeppson, 1976) with vitrified clay pipe between the two values.

Hydraulic laboratory measurements of Manning's 'n' roughness coefficients on new pipe vary little between plastic and concrete pipe. May *et al* (1986) report values of 0.009 for plastic pipe to 0.010 for unlined concrete pipe. Bloodgood and Bell (1961) found an average Manning's 'n' for asbestos cement pipe of 0.0109. Straub *et al* (1960) reported values of 0.0106 for tamped concrete pipe and 0.009 for cast concrete pipe.

Table 2 shows the Manning's 'n' value used by various agencies. The majority of these agencies specify a Manning's 'n' of 0.013. Some sewerage agencies believe that after a period of time, the deterioration of the pipe surface and joints increase friction, and recommend that a higher 'n' value should be used in design. The City of Los Angeles requires an 'n' value of 0.014 in their design standards for sanitary sewers.

 Table 2: Comparison of Manning's 'n', Minimum Pipe Size, and Maximum Velocity Criteria of Various Agencies

Agency	Manning's <i>'n'</i>	Minimum Pipe Size (in.)	Maximum Velocity (fps) ⁽¹⁾
Central Contra Costa Sanitary District	0.013	8	not specified
City of Los Angeles	0.014	8	not specified
Washington Suburban Sanitary Commission	0.013	8	15
City of Dallas	0.013	6	10
City of Phoenix	0.013	8	9
Clark County Sanitation District (NV)	0.013	8	10
City of Bellevue (WA)	not specified	8	10
Sacramento County (CSD-1)	0.013	8	not specified
City of Winters	0.013	8	not specified

⁽¹⁾ Most agencies allow the maximum velocity to be exceeded if special design procedures are followed.

A Manning's 'n' design value of 0.013, the most widely accepted value in the industry, provides some degree of conservatism if, in fact, there is a significant benefit to the smoother plastic pipe and PVC-lined (T-lock) pipe walls. For the Winters Sewer Master Plan, it is recommended that an 'n' value of 0.013 be used for all pipe materials.

B. Minimum Pipe Diameter

Although there are some agencies that allow new 6-inch sewers (and many agencies, including Winters, that have substantial amounts of existing 6-inch pipe), a minimum sanitary sewer pipe size of 8-inches is generally accepted as the industry standard and is the current proposed Winters design criteria. Therefore, except for service lines (laterals), the minimum acceptable gravity pipe diameter for all newly constructed pipelines in this Master Plan shall be 8 inches.

C. Maximum Allowable Flow Depth

Depending on the pipe size, three different criteria concerning the depth of flow are being used by major sewer agencies in California.

- 1) For smaller pipes, usually up to 12 or 15 inch in diameter, the depth of flow to pipe diameter (d/D) ratio of 0.7 or 0.75 is used for the design at peak flow. This lower (d/D) ratio is more conservative and is used to prevent flow blockages in smaller pipes due to debris and avoid potential backup into connected service laterals.
- 2) Larger pipes (18 inches and larger) are generally designed to flow full at design flow conditions. A pipe designed for full or 100 percent capacity has a d/D ratio of 1.0. Higher pipe capacities at d/D ratios of 0.8 to 1.0 will not be considered.
- 3) In order to save costs, some agencies allow surcharging of large diameter gravity flow sewers under peak flows associated with infrequent (long return period) storm events. The main disadvantage of this approach is that once surcharging is allowed, its extent is hard to control and may result in flooding of basements and other low lying areas, and low flow velocities that may cause solids to settle out in the pipe. Also, gravity sewers are not designed for pressure flows, and flows under surcharged conditions may result in some exfiltration of sewage.

For the Winters' Sewer Master Plan, it is recommended that the maximum depth of flow at peak design conditions in any collector (10-inch diameter or less) shall be 0.7 of the pipe diameter. Sewers 12 inches in diameter and larger may be designed to flow full unless direct service connections are planned, in which case the 0.7 diameter maximum depth shall govern. This criteria is widely accepted and complies with proposed City improvement standards.

D. Minimum Velocity/Slope

For municipal wastewater with its associated grit and solids content, 2 fps is commonly used as the minimum design velocity at full or half full pipe flow conditions. When the sewers are less than half full, the velocities are below 2 fps. When the depth of sewage is greater than half full, the velocity increases above 2 fps until a maximum velocity is reached at approximately 94 percent of full pipe depth. From 94 percent depth to full pipe, the velocity decreases back to 2 fps.

Comparison of Standards Used by Other Agencies

Table 3 lists the full pipe velocity criteria used by various cities and agencies. The criteria were found in the respective standards or design manuals.

Agency	Minimum Velocity (fps)	Condition
Central Contra Costa Sanitary District	2 (1)	At half pipe and full pipe conditions.
City of Los Angeles	3 (2)	At peak dry weather flow that exists at the time the pipe is placed into service.
Washington Suburban Sanitary Commission	2.5 ⁽³⁾	At half pipe and full pipe conditions.
City of Dallas	2	At half pipe and full pipe conditions.
City of Phoenix	2	At half pipe and full pipe conditions.
Clark County Sanitation District (NV)	2 (3)	At half pipe and full pipe conditions.
Sacramento County	2 to 3 ⁽⁴⁾	At half pipe and full pipe conditions.

Table 3: Comparison of Minimum Velocity Criteria of Various Agencies

⁽¹⁾ Minimum velocity in small sewers (8", 10" and 12") is required to be higher.

⁽²⁾ Minimum velocity in upstream terminal reach is allowed to be lower.

⁽³⁾ Minimum velocity in upstream terminal reach is required to be higher.

⁽⁴⁾ Minimum velocity is 2 fps for 8 to 18-inch, 3 fps for 39-inch plus, and varies from 2 fps to 3 fps between 21- and 36-inch.

Once a minimum velocity and Manning's 'n' are selected, the pipe slope can be calculated. Table 4 presents the minimum pipe slopes for various agencies for pipe sizes ranging from 8 to 36 inches. County Sanitation District 1 of Sacramento County (CSD-1) has over 2500 miles of mainline sewers and based on observed conditions in their various trunk sewers, they recently steepened their minimum required slopes for sewers greater that 18-inch. CSD-1 now requires that sewers 39-inches and greater have a minimum velocity of 3 feet per second (fps) at full pipe flow and that sewers from 21- to 36-inches in diameter transition from 2 fps to 3 fps. While this change in slope is minor, the decrease in maintenance requirements is noticeable.

Based on historical work order data and blockage reports, CSD-1 has determined that the terminal sewer reaches (sewers in cul-de-sacs for example) require more maintenance than downstream sewers. Although they have not yet modified their standards, they are considering steepening their required minimum slope for terminal sewer reaches. As shown in Table 4, various leading sanitation agencies currently require steeper terminal reaches. Until this requirement is more common in Northern California, we are not proposing this requirement for Winters.

Table 4: Minimum Pipe Slopes for Various Agencies (4) (5)

Pipe Size (in.)	Central Contra Costa Sanitary District	City of Los Angeles	Washington Suburban Sanitary Commission	City of Dallas	City of Phoenix	Clark County Sanitation District	Sacramento County (CSD-1)	Winters' Draft Design Standards
8	0.0077	0.0087 0.0044 ⁽¹⁾ 0.0060 ⁽²⁾	0.0050 0.0100 ⁽³⁾	0.0033	0.0033	0.0033 0.0060 ⁽³⁾	0.0035	0.0035
10	0.0057	0.0065	0.0040	0.0025	0.0024	0.0025	0.0025	0.0025
12	0.0022	0.0051	0.0030	0.0020	0.0019	0.0020	0.0020	0.0020
15	0.0015	0.0038	0.0019	0.0015	0.0014	0.0015	0.0015	0.0015
18	0.0012	0.0030	0.0015	0.0011	0.0011	0.0012	0.0012	0.0012
21	0.00095	0.00239	0.00120	0.00090	0.00092	0.00092	0.0012	0.00092

Pipe Size (in.)	Central Contra Costa Sanitary District	City of Los Angeles	Washington Suburban Sanitary Commission	City of Dallas	City of Phoenix	Clark County Sanitation District	Sacramento County (CSD-1)	Winters' Draft Design Standards
24	0.00080	0.00200	0.00100	0.00080	0.00077	0.00077	0.0011	0.00077
27	0.00070	0.00171	0.00102	0.00060	0.00066	0.00066	0.0010	0.00066
30	0.00060	0.00149	0.00089	0.00055	0.00057	0.00057	0.0010	0.00057
33	0.00055	0.00131	0.00078	0.00050	0.00050	0.00050	0.0010	0.00050
36 ⁽⁶⁾	0.00050	0.00117	0.00070	0.00045	0.00045	0.00045	0.0010	0.00045

⁽¹⁾ Minimum slope in upper reaches of system with few connections.

⁽²⁾ Minimum slope in upstream terminal reach.

⁽³⁾ Minimum slope in upstream terminal reach.

⁽⁴⁾ Agencies using 2 fps criteria: Sacramento County, Dallas, Phoenix, Clark County Sanitation District. Agencies using 2.5 fps: Washington Suburban Sanitary Commission Agencies using 3 fps: Los Angeles.

 ⁽⁵⁾ Agencies using Manning's 'n' coefficient =0.013: Sacramento County, CCCSD, WSSC, Dallas, Phoenix, CCSD. Agencies using Manning's 'n' coefficient =0.014: Los Angeles.

Recommendations for Minimum Slopes and Velocities

Two criteria are recommended to determine the design minimum slopes for sewers in Winters. The first criteria requires the minimum design slopes (see Table 6) to provide a minimum velocity of 2 fps for sewers between 8 and 18 inches in diameter and a minimum velocity of 3 fps for sewers 39 inches and larger. For sewers between 21 and 36 inches, the minimum slope allows the velocity to transition from 2 fps to 3 fps. The velocities are calculated with Manning's 'n' = 0.013 and full pipe conditions. The second criteria requires the design slope to provide a minimum velocity of 2 fps at peak dry weather flow at buildout. This criteria will minimize the possibility of inexperienced designers trying to meet depth requirements by oversizing the sewers and flattening the slope.

Recommended Minimum Slopes for Trunk Shed Plans.

This Master Plan will recommend sewer trunks and describe the collection system configuration of areas in the City that will be developed in the future. These configurations may consist of sewer alignments that are fairly fixed (i.e. alignments along existing roads) and alignments that are schematic (i.e. alignments through large tracts of currently undeveloped land). Both the 'fixed' alignments and the schematic alignments may be changed during the design process. As a general rule-of-thumb, the length of collector sewer after construction (i.e., following actual subdivision streets) is typically about twice the length of the straight-line distance from the connection point to the trunk sewer to the farthest point in the sewershed. For this reason, it is desirable that a certain amount of flexibility be built into the trunk shed plan configurations. This flexibility can be represented by using slopes that are steeper than the minimum design slopes. Table 5 presents the 'flexibility factors' used to modify minimum design slopes for 'fixed' (existing road) alignments and schematic (undeveloped land) alignments, compared to the minimum recommended design slopes.

Diameter	Minimum Trunk Shed Slopes			
(in.)	Alignment in Existing Road	Alignment in Undeveloped Land		
8 to 10	Increase 0.0002	 8" Sewer: Increase 0.0025 (2.5 feet per 1,000 ft) 10" Sewer: Increase 0.0010 (1 foot per 1,000 ft) 		
12 to 18	(1 foot per mile)	Increase 0.0004 (2 feet per mile)		
21 to 36	Increase 0.0001 (6-inches per mile)	Increase 0.0002 (1 foot per mile)		

Table 5: Basis of Minimum Trunk Shed Slopes (as Increase over Minimum Design Slope)

Table 6: Recommended Minimum Slopes

Diameter	Minimum	Minimum Trunk Shed Slopes			
(in.)	Design Slope ⁽²⁾	Alignment in Existing Road	Alignment in Undeveloped Land ⁽³⁾	Design Flow at Minimum Slope (mgd) ⁽¹⁾	
		Collec	ctor Sewers		
8	0.0035	0.0037	0.0060	0.39	
10	0.0025	0.0027	0.0035	0.59	
12	0.0020	0.0022	0.0024	0.86	
	Trunk Sewers				
12	0.0020	0.0022	0.0024	1.03	
15	0.0015	0.0017	0.0019	1.62	
18	0.0012	0.0014	0.0016	2.35	
21	0.0011	0.0012	0.0013	3.40	
24	0.0010	0.0011	0.0012	4.63	
27	0.0010	0.0011	0.0012	6.34	
30	0.0010	0.0011	0.0012	8.39	
33	0.0010	0.0011	0.0012	10.8	
36	0.0010	0.0011	0.0012	13.6	

⁽¹⁾ Based on minimum design slope, Manning's 'n' = 0.013, and full pipe for trunk sewers and d/D = 0.7 for collector sewers.

⁽²⁾ Minimum design slope selected to provide a minimum velocity of 2 fps for sewers between 8 and 18 inches. For sewers between 21 and 36 inches the minimum slope allows the velocity to transition from 2 fps to 3 fps. Velocities calculated with Manning's 'n' =0.013 and full pipe conditions. Slopes shown with two significant digits.

(3) Slopes shown for 8- and 10-inch sewers will be used to check minimum depth of sewer at periphery of trunk shed. Length will be measured on a straight line from trunk sewer to the periphery of the trunk shed. Sewers 12 inches and larger will be shown in the 'best guess' location of future roads in the trunk shed.

E. Maximum Velocity

As shown in Table 2, the maximum velocity used by various agencies generally ranges from 8 to 15 fps. For this Master Plan, a maximum velocity of 10 fps for gravity sewers is recommended.

F. Maximum Collector Sewer Depth

The City's Draft Improvement Standards do not address the maximum depth of sewer services or collector sewers. CSD-1 limits the maximum depth of sewer services to 16 feet which then limits the depth of collector sewers to 16 feet since sewer service lines connect to collector sewers. This restriction exists because the CSD-1 Maintenance and Operations group has the capability to make repairs to service lines and collector sewers to a depth of 16-feet with their own excavation and shoring equipment.

Excavations deeper than 16-feet require the M&O group to hire an outside contractor to perform the necessary repairs. Since most sewer repairs occur on service lines and collector sewers, it was logical for CSD-1 to limit collector sewers to a maximum depth of 16-feet. Following similar logic, we recommend that the maximum depth for service sewers and collector sewers in Winters be limited to 16 feet.

For trunk sewers (sewer 15-inch and larger and 12-inch sewers without service sewer connections), we recommend that the maximum depth be evaluated on a case-by-case basis. In general, a maximum cover of 20 feet can be used.

G. Minimum Pipe Depth

When discussing the depth of a pipeline, two terms are used: depth and cover. Sometimes these terms are used interchangeably, but for the purposes of this Master Plan, the following definitions will be used:

- Depth: Distance from ground surface to invert of pipe.
- Cover: Distance from ground surface to crown (top) of pipe.

The deeper a gravity sewer is located, the more flexibility there is with respect to alignment and connection point selection for future upstream connections. If a gravity sewer is too shallow, future upstream development using gravity connections may be restricted, and a lift station may be required. For this reason, it is important to plan sewers at proper depths during the master planning process. For this Master Plan, it is recommended that a minimum depth of 7 feet be used for planning future sewers, including the sewers at the periphery of the system. The following procedure will be followed to confirm that this minimum depth criteria is met:

- 1. Delineate trunk shed boundary.
- 2. Using existing features such as roads and property lines, create plan view of sewer system skeleton within the trunk shed.
- 3. Calculate design flows.
- 4. Using design flows, calculate pipe sizes and slopes.
- 5. Connect far corners of trunk shed to trunk sewer skeleton using a straight line at the trunk shed minimum slopes (this represents a collector sewer serving the future development at the periphery of the trunk shed.) Check minimum depth at far corners as well as at all other locations in the trunk shed.

Due to topographic features such as canals, creeks, etc., there may be locations where the minimum depth criteria cannot be met. This will be considered acceptable as long the following two conditions are satisfied:

- 1. The length of the reach of pipe at less than minimum depth is relatively short (less than about 50 feet).
- 2. There is at least 4 feet of separation between the flow line of the creek or canal and the crown of the sewer. The flow line elevations will be based on either field survey data or flow line information from the recent Winters Drainage Master Plans. USGS topographic maps are not accurate enough to determine flow line elevations of canals/creeks for this purpose.

During the final design phase, details such as concrete encasement, pipe material, flotation caps, creek restoration details, hydroseed mixes, manhole setback distances, and trench plugs will be determined based on Winters' Design Standards and the depth of sewer, diameter of sewer, length of crossing, and permit requirements.

H. Design Requirements at Increases in Pipe Size

As design wastewater flowrates increase from upstream to downstream, it is necessary to increase the size of the sewer pipe. Pipe size increases are only allowed at manholes. There are several methods that may be used to determine the relative vertical alignment of the upstream and downstream pipes at changes in pipe size:

- 1. Match the elevation of the energy grade lines of the two pipes at the design flowrate.
- 2. Match the crown elevations.
- 3. Match the 2/3 diameter points.
- 4. Match the 0.7 diameter points.
- 5. Match the 5/6 diameter points.

Method 1 is the most rigorous and is usually only used during final design. Methods 3, 4, and 5 are quick approximations of method 1. Method 2 is the most conservative and easiest to apply at the planning stage. Therefore for this Master Plan, method 2, matching crown elevations at pipe size increases, is recommended.

Same Size Branch Sewer Connections.

There may be locations in the collection system where two pipes of the same size connect together but the design flow in the branch pipe is significantly lower than that in the mainline pipe. At these locations, if the crown elevations are matched, the higher flow level in the main sewer will cause a backwater condition in the branch sewer. For this Master Plan, it is recommended that the branch sewer elevation be set 0.1 foot above the main sewer elevation when the branch sewer is the same size as the main sewer.

I. Headloss in Manholes

There are various approaches used to account for the headloss generated by manholes:

- 1. Every manhole (straight or deflection) is assigned a 0.1-foot drop.
- 2. Deflection manholes are assigned a minimum of 0.1-foot drop.
- 3. Calculation is made for each headloss component, including headloss due to change of direction, change of slope, and sidewall friction within the manhole, for pipelines with velocities greater than 3 fps.

Method 1 can be excessive except in areas with an abundance of available fall. Method 3 is too rigorous for a planning level analysis. For this Master Plan, Method 2 is recommended with these added clarifications: Deflection manholes with changes in direction greater than 20 degrees will be assigned a 0.1-foot drop. Deflections greater than 90 degrees are not allowed.

If a sewer increases in diameter in a deflection manhole, the invert elevation increases are not additive. For example, if two 12-inch sewers join in a manhole and discharge to an 18-inch sewer, the drop in invert elevation would be 0.5 feet (based on matching crowns), not 0.6 feet (0.5 feet + 0.1 feet for deflection).

J. Hydraulic Design Criteria for Force Mains

Pump stations and force mains should be avoided in sewage collection systems as much as possible but may become necessary to keep the collection system from becoming excessively deep. The hydraulic criteria for selecting the diameter of force mains are presented below.

Minimum and Maximum Velocities. Various agencies use different design criteria for velocities in force mains. Sacramento County is currently writing a Pump Station Design Manual. Table 7 presents the criteria from various agencies.

Agency	Force Main Velocity
Washington Suburban Sanitation District	 Maximum: 6 fps Minimum: 2 fps to keep solids in suspension, 3 to 3.5 fps to resuspend solids
City of Dallas	3 to 5 fps
City of Phoenix	3.5 to 6 fps

Table 7: Comparison of Force Main Velocity Criteria of Various Agencies

The maximum velocity in a force main is usually determined by balancing a number of factors including cost of the pipeline; cost of power usage (higher velocity results in higher headloss); and cost of pumps, motors, electrical equipment, and surge protection facilities. Given that the design flow rate for sewer force mains (PWWF at buildout) occurs infrequently, once every 10 years if the design storm is a 10-year storm, it is cost effective to set the maximum velocity at a high velocity since the daily peak flow rate is typically much lower. (For a typical water pump station, the daily flow rate is closer to the design flow rate, which tends to lower the cost effective maximum velocity for water transmission pipelines compared to sewage force mains.) For this Master Plan, a maximum force main velocity of 8 fps at PWWF is recommended.

Force mains connected to large pump stations (e.g., East Street Pump Station) flow constantly, whereas small pump stations, such as El Rio Villa pump station, pump intermittently, and the solids in the force mains can settle out during low flow periods as the wet well fills. This is especially true during the early startup years of a pump station before its upstream catchment area fully develops. To resuspend the solids that may settle out in the force main, a minimum velocity of 3.5 fps with one pump running is recommended for use in the Master Plan.

Most force mains are relatively flat and the 3.5 fps recommendation is applicable. A small number of pump stations pump uphill through force mains that are constructed on steep slopes. This adverse slope requires a higher sewage velocity to transport solids. Therefore, if a force main is steeper than 20 percent, additional analysis is required to determine the acceptable minimum velocity.

Dual Force Mains.

To obtain the required velocities for both initial and ultimate design flow conditions, dual force mains may be needed. Dual force mains also have the ability to allow for future inspection and rehabilitation of the pipes, which generally cannot be adequately inspected or repaired without being taken off line and dewatered for up to 24 hours at a time

In most cases, dual force mains can be built in two stages, since initial flows are generally significantly lower than design flows at buildout. However, building dual force mains in two stages may not be prudent in locations where available space may not be available in the future or in locations where one-time construction is strongly preferred to minimize impacts to the environment (e.g., wetlands), costly mobilization (e.g., highway and river crossings), or disturbance to the public.

For this Master Plan, it will be assumed that all pump stations will have dual force mains of the same size and that the second force main will be constructed 20 years after the initial force main. If a different method of dewatering the first force main is easily identified, only one force main is required. For example, for short force mains that do not cross railroads, freeways, or rivers, bypass pumping using temporary above ground piping for bypass pumping is an acceptable method. For long force mains, dual force mains are one solution, but other solutions are possible depending on the site. Each force main will be sized to carry half of the peak design flow at a maximum velocity of 8 fps.

Also, each force main must have sufficient capacity to carry the peak dry weather flow at buildout so that one force main can be dewatered and undergo inspection or rehabilitation. Since force main inspections and rehabilitation events are relatively rare, the maximum velocity criteria can be relaxed and increased to 10 fps for peak dry weather flows through a single pipe.

Headloss

The Hazen-Williams formula will be used for calculating the friction headloss of force mains. The Hazen-Williams roughness coefficient, C, varies with pipe material, velocity, size, and age. Sacramento County field studies have measured C factors ranging from 105 (Arden Pump Station 60-inch RCP force main) to 130 (Sailor Bar Pump Station 14-inch PVC force main). For this Master Plan, a roughness coefficient of C = 100 is proposed to be used for all pipe sizes and materials.

K. Inverted Siphons

The term siphon as used in wastewater practice refers to an inverted siphon or depressed sewer which dips below the hydraulic grade line to avoid obstructions and stands full of sewage even with no flow. Its purpose is to carry sewage under an obstruction and to regain as much elevation as possible after passing the obstruction. Inverted siphons should be avoided unless clearly necessary to cross under major obstructions such as rivers or large creeks, major utility pipelines, highways, etc., and other alternatives are significantly more expensive. Alternatives to inverted siphons include deeper gravity sewers and/or pump stations, a well as "D"-shaped or box sewers. There are currently no inverted siphons in the City of Winters' sewer system, and it is generally the City's preference to construct deeper sewers and/or pump stations to clear deep obstructions.

The approach used in this Master Plan when planning relief projects or future expansion projects will be to avoid inverted siphons whenever possible. If it becomes necessary to use an inverted siphon, the following approach will be used:

- The length of the downflow and upflow legs of the siphon will based on a maximum slope of 15 percent to allow floatables to be conveyed downward and solids to be conveyed upward. [source: City of Los Angeles Sewer Design Manual Figure F272]
- The upstream invert elevation will be calculated by adding 12 inches plus the pipe friction to the downstream invert elevation. (The 12-inch factor is a conservative factor used at the planning phase; during the design phase, detailed hydraulic calculations would be performed.)
- The pipe friction will be calculated using the Hazen-Williams formula with a 'C' coefficient of 100.
- The pipe barrel diameter will be determined based on the following three criteria [source: City of Los Angeles Sewer Design Manual]:
 - Minimum velocity of 3 fps at ADWF during early years of operation.
 - Minimum velocity of 4 fps at PDWF during early years of operation.
 - Minimum 8-inch pipe diameter.
- Two barrels will be assumed for each siphon.

References

- 1. Bloodgood, D.E. and J.M. Bell., Manning's Coefficient Calculated From Test Data. Journal of the Water Pollution Control Federation, 176-183, February, 1961.
- 2. Jepperson, R.W., Analysis of Flow in Pipe Networks. Ann Arbor Science Publishers Inc., Michigan.
- May, D.K., A.W. Peterson, and N. Rajaratnam, A Study of Manning's Roughness Coefficient for Commercial Concrete and Plastic Pipes. University of Alberta, T. Blench Hydraulics Laboratory Technical Report, 1986.
- 4. Straub, L.G., C.E. Bowers, and M. Pilch, Resistance to Flow in Two Types of Concrete Pipe. Technical Paper No. 22, Series B, December, 1960. St. Anthony Falls Hydraulics Laboratory, University of Minnesota.

Technical Memorandum 1B2

City of Winters – Sewer System Master Plan

Subject:	Wastewater Design Flow Criteria - FINAL
Prepared For:	Michael Karoly, PE - City of Winters
Prepared By:	Mai-Tram Le, P.E.
Reviewed By:	Glenn E. Hermanson, P.E.
Date:	July 23, 2004 (FINAL) November 10, 2003 (DRAFT)
Reference:	098.0021

I. Introduction

This Technical Memorandum (TM) presents the methodology used to develop wastewater flow estimates for the City of Winters' (City) Sewer Master Plan. The flow estimates, in conjunction with developed land use scenarios¹ and the sewer master planning criteria presented in a separate TM^2 , will be incorporated into a steady state hydraulic model for analyses to determine existing and future deficiencies in the existing sewer collection system and will serve as the basis for sizing future pumping and conveyance facilities.

This TM is organized as follows:

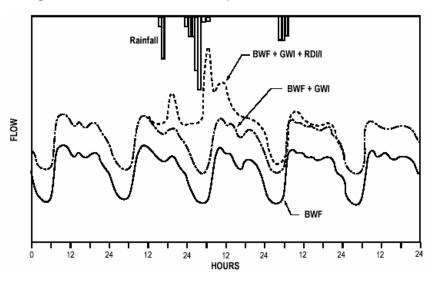
- I. Introduction
- II. Summary of Recommended Wastewater Design Flow
- III. Wastewater Flow Components
- IV. Wastewater Design Flow Criteria
 - A. Hydraulic Model
 - B. Design Flow (PWWF)
 - i. Average Dry Weather Flow (ADWF)
 - ii. Peak Dry Weather Flow (PDWF)
 - iii. Infiltration/Inflow (I/I)

¹ Two land use scenarios will be evaluated as part of the Winters Sewer Master Plan: a. existing (dated based on aerial photos as September 2002), and

b. buildout (expected to occur in 2010 as referenced in the General Plan)

² RMC, DRAFT Sewer Collection Design Criteria for Master Planning TM 1B, City of Winters - Sewer System Master Plan, October 20, 2003.

II. Summary of Recommended Wastewater Design Flow


A summary of the recommended wastewater design flow generation based on a steady state hydraulic modeling approach are presented as follows:

Design Flow = PWWF = PDWF + I/I where PDWF ⁽³⁾ = ADWF x PF PF ⁽⁴⁾ = 3 I/I = 600 gallons per acre

III. Wastewater Flow Components

The basic components of wastewater flows are base wastewater flow (BWF) and infiltration/inflow (I/I). The wastewater components are described below and shown in Figure 1.

Figure 1: Wastewater Flow Components

BWF is generally defined as the combined sanitary and processed flow contributed by residential, commercial, industrial, and institutional users of the sewer system. BWF rates vary based on the land use category, the hour of the day, and the day of the week.

I/I is extraneous (i.e. non BWF) water that enters the sewer system. I/I includes groundwater infiltration (GWI) and rainfall-dependent I/I (RDI/I).

As the term GWI implies, GWI is

groundwater that infiltrates the sewer collection system via cracks and defects in pipes, pipe joints, and sewer structures such as manholes. As such, the magnitude of GWI depends upon the age and physical condition of the sewer system as well as the relative elevation of the groundwater table with respect to the sewer system. GWI tends to decrease during the dry summer and fall months and increases during the wet weather season. However, since changes in the groundwater table occur relatively slowly (over a matter of weeks or months rather than hours), GWI rates can be considered constant over short durations.

In theory, BWF should not include dry weather GWI (or base infiltration). However, it is almost impossible, and not practical to accurately separate dry weather GWI from BWF based on actual measured flows. Therefore, the combination of BWF plus base infiltration is typically considered as a single component, termed average dry weather flow (ADWF). The term GWI is then primarily used to refer to the wet weather component of GWI, or the increase in GWI between the dry and wet weather season.

⁽³⁾ Refer to Section IV.B for ADWF generation and Section IV.C for peaking factor (PF)

⁽⁴⁾ Except for Park & Recreation parcels and El Rio Villa. The Parks & Recreation parcels generally have very low sewage generation factor and El Rio Villa Pump Station convey flows to the collection system at a constant rate. Hence, it is assumed that their flow will not vary significantly throughout the day (i.e. peaking factor = 1)

RDI/I is storm water that enters the sewer system in direct response to rainfall. RDI/I may enter the system directly by such means as cross-connections between the storm drain and sanitary sewer systems or through area drains and downspouts illegally connected to the sanitary sewer system. RDI/I may also enter the sewer system indirectly through sewer defects, particularly in shallow pipes such as private building laterals. RDI/I flows are directly related to the intensity and duration of rainfall, and generally rise quickly and recede very rapidly after the end of the storm. In addition to being dependent on rainfall, RDI/I is sensitive to soil moisture and tends to be most significant late in the wet season or after extended periods of rainfall when the soil is highly saturated.

IV. Wastewater Design Flow Criteria

To develop flow projections for the service area, flow estimating criteria were defined for each component of wastewater flows. For the purpose of this master plan, it was assumed that the design flow criteria will be the same for the existing and buildout land use scenarios. Hence, it is assumed that future sewage generation characteristics will not be affected by factors such as water conservations, increased in sewer system age, etc. The criteria for simulating hourly, weekday, and seasonal flow variations are typically defined by the type of hydraulic model used. The hydraulic model selection and design flow criteria are described in the following sections.

A. Hydraulic Model

There are two types of hydraulic models used to simulate a sewer collection system: 1) steady state/static simulation and 2) extended period/dynamic simulation. Simulations from a steady state model represent a snapshot of the system performance at a given point in time under specific sewage generation conditions (i.e. ADWF, PDWF, PWWF, etc.). The extended period model is a continuous simulation of the change in system flow rate and is typically used to analyze the operational performance of the system over a 24-hour period. Dynamic modeling requires more extensive data input, including various 24-hour sewage generation patterns (also known as diurnal curves or wastewater profiles) for various land use categories within the sewer collection system.

Extended period simulations are typically used to evaluate operational studies, whereas steady-state models are used for sizing of sewers and pump stations. Hence, for the purpose of this master plan, a steady-state hydraulic model will be used in the system analyses to size sewers and pump stations.

B. Design Flow (PWWF)

Sewer system facilities must be sized to convey the peak flows in the system. Typically, the peak flow occurs during a wet weather event, and is therefore termed the peak wet weather flow (PWWF). Since the design storm peak can occur at any time of the day, it was assumed for a steady-state model and conservative master plan criteria that the peak I/I flow would coincide with the peak dry weather flow (PDWF). The design flow or PWWF for any segment of the sewer system is therefore calculated using the following formula:

Design Flow	= PWWF
PWWF	= [ADWF * PF] + [I/I]
	= PDWF + I/I

The PDWF is calculated by applying a peaking factor to the ADWF. The peak I/I flow is assumed to be constant at a rate of 600 gpd/net acre. The development of each of these flow components is discussed in detail in the following sections.

i. Average Dry Weather Flow (ADWF)

As described above, ADWF flowrates in the sewer system depend upon the type of land use and the day of the week. For the purposes of this study, the ADWF flowrates used in developing wastewater flow projections are assumed to represent BWF plus dry weather groundwater infiltration. Maps of the identified existing and buildout land uses are located in Attachment A⁵. The weekday flow variation shall be reflected in the peaking factor use for steady-state modeling analyses. A summary of the existing and buildout land uses are located in Table 1.

Residential

Existing residential flows shall be generated based on a population method. Based on Section 7-2 of the City's June 2003 Draft Design Standards, a per capita flow factor of 90 gallons per day (gpcd) will be used along with the population density listed in the General Plan to generate flows for each developed residential parcel. Hence, existing residential ADWF flows is generated for each developed parcel using the following formula:

ADWF (gallons per day - gpd) = [Population Density]*[90 gpcd]

For vacant and existing developed high density residential area where more than one resident/house could be and are developed on each parcel, the flow will be generated based on an areal method using the unit areal flowrates (gpd/net acre)⁶. The proposed and 1992 Sewer System Master Plan areal ADWF factors are listed in Table 1 for comparison. Proposed residential areal ADWF factors were developed using the following formula:

For existing scenarios, the residential density used for generating flows from existing developed high density residential parcels is the minimum density listed in the General Plan (i.e. 6.1 and 10.1 DU/acre for MHR and HR categories, respectively).

To be conservative, it is assumed that vacant residential parcels will be developed according to the maximum residential density allowed for each categories (i.e. 7.3 DU/net acre for LR, 20.0 DU/net acre for HR, 10.0 DU/net acre for MHR, etc.)

The population density used to generate existing flow for the Medium Density (MR) Residential Land Use category was reduced from 3.5 person/DU, as listed in the General Plan, to 3.0 person/DU to arrive at a more realistic total existing daily flow value for the City. The other option for reducing flow was to reduce the per capita design flow rate of 90 gpcd. Since flow data was not available to determine the actual per capita flow, it was decided to keep the conservative design rate of 90 gpcd for master planning purposes and reduce the population density for the MR category (the largest residential land use category) instead. With a population density of 3.0 persons/DU for MR category, the total daily flow for the City is 0.83 mgd as oppose to 0.88 mgd.

⁵ Land use maps were developed based on the following information/data:

^{1.} Winters 1992 General Plan and subsequent Land Use Diagram and Zoning Map updates,

^{2.} Aerial photos,

^{3.} Yolo County Cooperative GIS Parcel Map layer, and

^{4.} Inputs from the City of Winters Planning Division.

⁶ Gross acreage includes all land (including streets and right-of-ways) designated for particular uses while net acreage, as defined in this master plan, excludes streets/roadways. Winters' urban limit line contains approximately 1980 gross acres (*http://www.cityofwinters.org/profile/geography.html*). As shown in Table 3, the net acreage (i.e. excluding roadways) is 1,782 acres, which is approximately 90 percent of the gross acreage.

By counting existing occupied residential parcels and using the residential and population density values used in generating the existing residential flows, the estimated existing (as of September 2002) population for the City is 5,608 people. If a population density of 3.5 person/DU was used for the MR category, the estimated existing population would be increased to 6,160 people. The population estimate provides a reality check for the residential flow assumption. Since the population of Winters was estimated by the California State Department of Finance⁷ to be 6,300 for 2002, the population estimate confirms that the methodology proposed to generate existing residential flow is a very reasonable and realistic approach.⁸

Commercial, Industrial, and Others

Non-residential flows shall also be generated based on an areal method for different land use categories in the City's Draft Design Standards. Commercial, industrial, and other ADWF factors are defined in the City's Draft Design Standards. These proposed values are also listed in Table 1 along with values used in the 1992 Sewer Master Plan. For the most part, except for the Planned Commercial and Heavy Industrial categories, the proposed ADWF factor and those used in the 1992 Sewer System Master Plan are identical to each other.

According to the General Plan, the standards of building intensity for non-residential uses are stated as maximum floor-area ratios (FARs) based on net acreage. A FAR is a ratio of the gross building area zoned for a particular usage category to the net area of the parcel. Per conversation with the City, a FAR of 1.0 shall be applied for all non-residential parcels in calculating the proposed ADWF factor for the purpose of this master plan.

Public/Quasi-Public.

Various locations within the City are zoned public/quasi-public (PQP) and are shown Map 3 in Attachment A. PQP areas include a variety of areas including schools, parks, City Hall, and detention basins. For this master plan, the applicable sewage generation calculation will be determined on a case by case basis for each PQP area with schools being treated as point sources. Table 2 is a listing of the sewage generation flowrates for each PQP location.

Large Dischargers

Flows from large dischargers, such as major industries and large institutions, are treated as point sources in developing system wastewater flows since they cannot be accurately estimated using the typical areal unit flowrates described above. For this master plan, the Mariani Nut and Fruit Company and El Rio Villa have been identified as the only large dischargers for the City.

The Mariani facility is located to the east of Railroad Avenue from Anderson Avenue to Abbey Street. Based on examination of aerial photography, it appears that the main processing area is located north of Grant Avenue between Dutton Street and Walnut Lane. This three acre parcel is assumed to generate 100 gpm (0.144 mgd) of ADWF. The dry weather peaking factor of 3 will also be applied to the Mariani facility (PDWF = 300 gpm or 0.432 mgd). This ADWF correspond to an areal flowrate of 48,000 gpd/acre. This flowrate assumption can be modified as necessary as the City collects additional flow data from the Mariani facility.

⁷ <u>http://www.dof.ca.gov/HTML/DEMOGRAP/E-1text.htm</u>

⁸ The population estimate generated by the same method for the buildout scenario is 18,320 people. This is approximately 4,000 more people than the estimated buildout population from the General Plans since the maximum residential density was assumed for all vacant residential parcels and future residential roads has not been taken into account. However, this conservative approach is acceptable for master planning purposes.

El Rio Villa is a small subdivision located approximately 0.7 miles east and outside of the City's urban limit boundary. The City has a contract with Yolo County to convey and treat the sewage from El Rio Villa and there are no plans to increase the size of this small subdivision. Wastewater from El Rio Villa is collected and pumped to the City's sewer collection system via the El Rio Villa Pump Station (ERVPS).

The ERVPS is a two-stage pump station consisting of two pairs of pumps. Each pair of pumps can pump 155 gpm. It is assumed that one of the pairs of pumps provides stand-by capacity. Flow data from the ERVPS indicated that on an average dry day, the pumps are activated approximately 50 times a day for a minute or two each time. Therefore, even though the pump station only pumps 12,000 gallons on an average dry weather day (equivalent to 8.3 gpm), the sewer system must be capable of conveying a flowrate of 155 gpm.

Further downstream in the sewer system, it may be possible to reduce the impact of this short duration peak flow as the peak is attenuated. For example, the impact of the flow from the ERVPS on the East Street Pump Station is closer to 10 gpm than 155 gpm. This reduction of impact will be evaluated on a case-by-case basis during modeling.

Estimated ADWF Flows

Table 3 presents the existing and buildout ADWF generated for the City based on the methodology discussed above. The existing and buildout ADWF generated is approximately 0.83 mgd and 2.91 mgd, respectively⁹. The ADWF value of 0.83 mgd for existing condition is a reasonable assumption and validates the proposed methodology since the average daily flow at the treatment plant is 0.83 mgd¹⁰. The ADWF projection of 2.91 mgd for the buildout land use scenario is a conservative value assuming that the maximum density allowed by the General Plan would be implemented and is a reasonable assumption for master planning purposes.

⁹ Does not include flows from El Rio Villa.

¹⁰ Larry Walker Associates, *City of Winters Sewer Master Plan Update – Wastewater Treatment Facilities*, December 2000.

Table 1: Existing and Buildout Land Use Categories, Residential Densities, and Current and 1992 ADWF Factors

			EXISTING & DENS		PROPOSED	1992	
LAND USE CATEGORIES	CODE	ZONING DESIGNATION	CODE	Residential Density ^a (DU/net acre)	Population Density ^c (Person/DU)	ADWF FACTOR ^e (gpd/net acre)	ADWF FACTORS (gpd/acre)
Residential							
Rural	RR	Rural	RR	0.5 - 1.0	3.5	315 ^f	500
Low Density	LR	Single Family (7,000 SF Ave. Min.)	R-1	1.1 - 7.3	3.5	2,300 ^f	1,500
Medium Density	MR	Single Family (6,000 SF Ave. Min.)	R-2	5.4 - 8.8	3.0 / 3.5 ^d	2,772 ^f	2,000
Medium/High Density	MHR	Multi-Family	R-3	6.1 - 10.0 ^b	3.0	1,647 / 2,700 ^{b,f}	2,500
High Density	HR	High Density Multi-Family	R-4	10.1 - 20.0 ^b	3.0	2,747 / 5,400 ^{b,f}	3,500
Commercial							
Neighborhood	NC	Neighborhood	C-1			2,500	2,500
Central Business District	CBD	Central Business District	C-2			3,500	3,500
Highway Service	HSC	Highway Service	C-2			2,500	2,500
Planned	PC	Planned	P-C			2,500	2,000
Planned/Business Park	PC/BP	Planned/Business Park	PC/BP			2,500	2,500
Industrial							
Light	LI	Light	M-1	N/A	N/A	2,000	2,000
Heavy	HI	Heavy	M-2			5,000	3,000
Other							
Agriculture	AG	General Agriculture	A-1			0 ^g	n/a
Office	OF	Office	O-F			2500	2500
Public/Quasi-Public	PQP	Public/Quasi-Public	PQP			Varies ^h	Varies
Parks & Recreation	PR	Parks & Recreation	PR			200	200
Open Space	OS	Open Space	OS			0	n/a

^a The Residential Density use for future residential developments on vacant parcels for the Sewer Master Plan shall be the densest allowed in the General Plan.

^b The Residential Density used for MHR and HR parcels under existing condition is 6.1 and 10.1 DU/net acre, respectively. ^c Based on Section 7-2 of Winters Draft Design Standards.

^d The Population Density used for MR parcels under existing condition is 3.0 person/DU

^e Per conversation with the City, a FAR of 1.0 shall be applied for all non-residential parcels in calculating the proposed ADWF factor for the purpose of this master plan. ^f Residential ADWF for each occupied/non-vacant parcel = [Population Density]*[90 gpcd]

Residential ADWF Factor for each vacant and occupied MHR and HR parcels = [maximum Residential Density] * [Population Density] * [90 gpcd].

^g Assumed Agriculture parcels are using septic tanks and are not connected to the sewer collection system

^h ADWF for PQP parcels will be evaluated on a case by case basis, refer to Section IV.C for more discussion and Table 2 for more information.

Table 2: ADWF for PQP Parcels

PQP PARCEL	DESCRIPTION	EXISTING ADWF ^a (gpd)	BUILDOUT ADWF ^a (gpd)	EQUIVALENT LAND USE ^b	COMMENT
1	Shirley Rominger Intermediate School	18,000	35,000 ^c	N/A	Existing = 360 students Buildout = 700 students
2	Winters Middle School	23,000	30,000 ^c	N/A	Existing = 460 students Buildout = 575 students
3	Cemetery	7,200	7,200	N/A	Small office facility.
4	Detention Basin	0	0	N/A	
5	Waggoner Elementary School	35,000	35,000 ^d	N/A	Existing = 700 students Buildout = 700 students Assumed connection at Grant Ave.
6	Well #3	0	0	N/A	
7	John Clayton Kinder School	10,000	25,000 ^d	N/A	Existing = 200 students (10,000 gpd) Buildout = 200 students (10,000 gpd)
8	Winters High School	37,620	45,000 ^e	N/A	Existing = 627 students Buildout = 700 students Assumed connection at Railroad Ave (90% of flow - gym) Grant Ave. (10% of flow - admin.)
9	City Hall / Police Dept	3,500 gpd/net acre	3,500 gpd/net acre	CBD	
10	Yolo County Library	3,500 gpd/net acre	3,500 gpd/net acre	CBD	
11	Fire Department	3,500 gpd/net acre	3,500 gpd/net acre	CBD	
12A	Park/Community Center	3,500 gpd/net acre	3,500 gpd/net acre	CBD	Sewage generation is highly variable and is assumed to be equivalent to CBD parcels
12B	East Street Pump Station	0	0	N/A	
13	Corporation Yard	3,500 gpd/net acre	3,500 gpd/net acre	CBD	Sewage generation is highly variable and is assumed to be equivalent to CBD parcels
14	Winters School District	0	6,000 ^f	N/A	Existing = 0 students Buildout = 100 students

PQP PARCEL	DESCRIPTION	EXISTING ADWF ^a (gpd)	BUILDOUT ADWF ^a (gpd)	EQUIVALENT LAND USE ^b	COMMENT
15	Future Elementary School	0	35,000 ^d	N/A	Existing = 0 students Buildout = 700 students
16	Future Fire Station	0	3,500 gpd/net acre	CBD	
17	Future High School	0	60,000 ^e	N/A	Existing = 0 students (0 gpd) Buildout = students (60,000 gpd)
18	Landfill (closed) and Future Park	0	900	PR	Parcel is approximately 30 acres. 75% of parcel will be a park, 25% of the parcel will not be developed.
19	Future City Facility	0	30,000	NC OF	The future use of this 30 acre site is unknown. Assume future sewer generation equivalent to NC and OF parcels.
20	Wastewater Treatment Plant	0	0	N/A	

^a Rounded to the nearest 1,000 ^b For modeling purposes. The equivalent Land Use categories and their codes are shown in Table 1. ^c From the City's Design Standards, ADWF = 50 gpd/student, but not less than 30,000 gpd at buildout ^d From the City's Design Standards, ADWF = 50 gpd/student, but not less than 25,000 gpd at buildout ^e From the City's Design Standards, ADWF = 60 gpd/student, but not less than 45,000 gpd at buildout

^f From the City's Design Standards, ADWF = 60 gpd/student

		EXISTING	LAND USE	BUILDOUT	LAND USE
LAND USE CATEGORIES	CODE	TOTAL NET ACREAGE ^a	TOTAL ADWF (gpd)	TOTAL NET ACREAGE ^a	TOTAL ADWF (gpd)
Residential					
Rural	RR	0	0	47	14,800
Low Density	LR	89	138,000	299	662,300
Medium Density	MR	196	284,600	314	631,000
Medium/High Density	MHR	16	27,000	69	177,100
High Density	HR	15	41,400	41	188,600
Sub-Total		316	491,000	770	1,673,800
Commercial					
Neighborhood	NC	4	9,800	22	55,100
Central Business District	CBD	46	162,100	63	220,000
Highway Service	HSC	1	2,200	6	13,900
Planned	PC	0	0	24	58,900
Planned/Business Park	PC/BP	0	0	54	136,200
Sub-Total		51	174,100	169	484,100
Industrial					
Light	LI	0	0	65	129,600
Heavy	HI	0	0	37	186,300
Sub-Total		0	0	102	315,900
Other					
Agriculture	AG	0	0	4	0
Office	OF	4	11,200	5	13,200
Public/Quasi-Public	PQP	280	150,300	399	390,700
Parks & Recreation	PR	14	1,900	145	30,300
Open Space	OS	49	0	188	0
Vacant	VC	1068	0	n/a	n/a
Sub-Total		1,415	-	741	434,200
	TOTAL	1782	0.83 mgd	1782	2.91 mgd

^a Net acreage exclude streets and roadways. Winters' urban limit line contains approximately 1980 gross acres. For this master plan, the existing net acreage is approximately 90 percent of the gross acreage. For a conservative analysis, it is assumed that the net acreage will not decrease for the buildout scenario even though more residential roads will be built within existing vacant parcels.

ii. Peak Dry Weather Flow (PDWF)

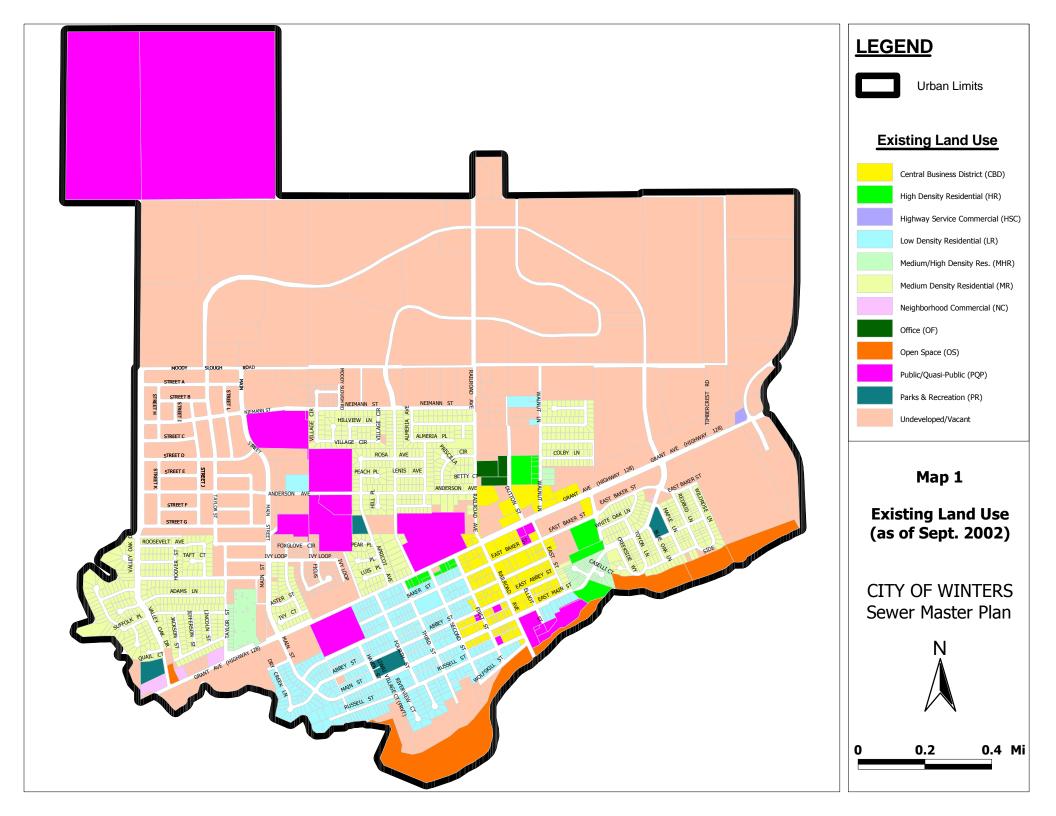
Base wastewater flows vary throughout the day, with peak flow periods typically occurring in the morning and early evening hours. The ratio between these daily peak flowrates and the average flowrates is generally expressed as a peaking factor:

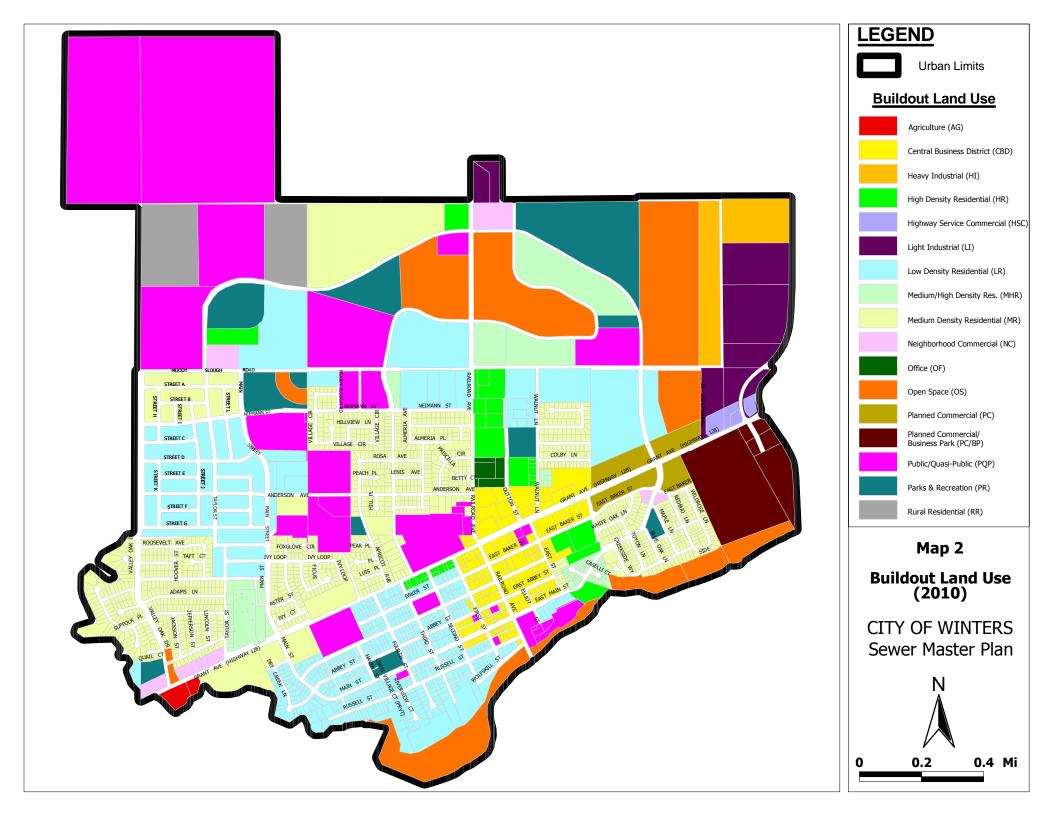
	Peak Dry W	eather Flow = [Average Dry Weather Flow] x [Peaking Factor]
or	PDWF	= ADWF x PF

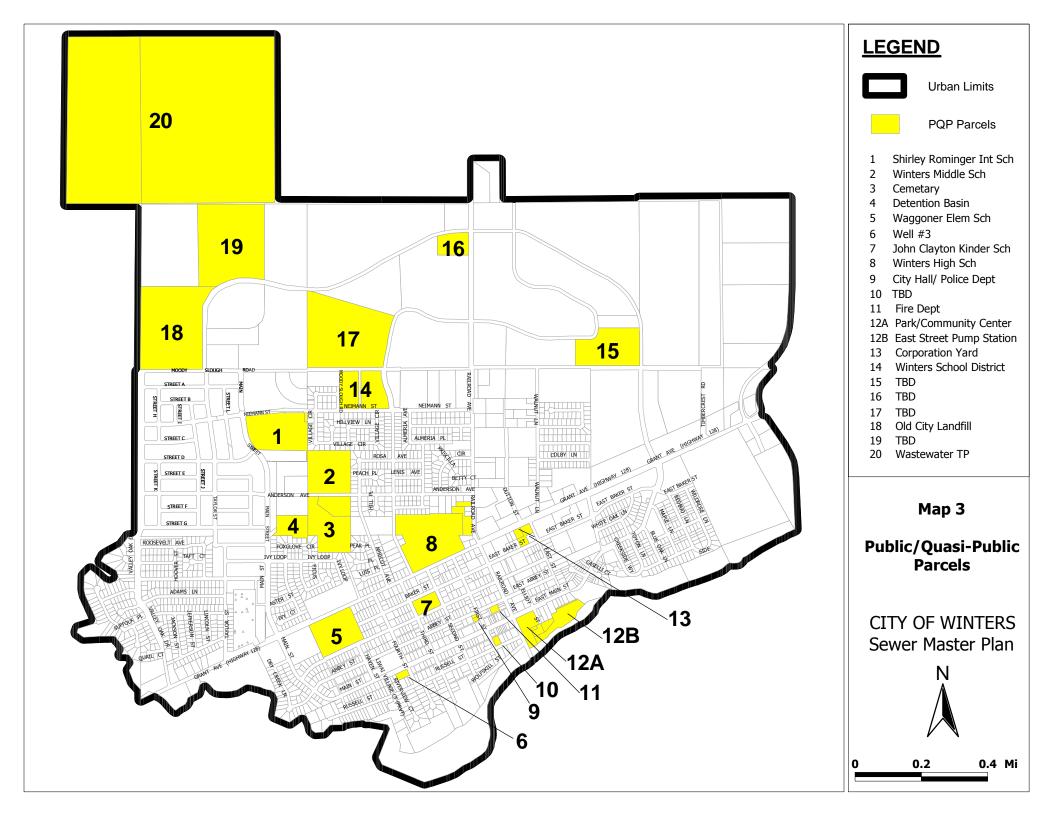
Peaking factors are often developed based on dry weather flow monitoring data for steady state hydraulic simulation. Since the City does not have any current flow monitoring data, a peaking factor of 3 will be

used in this master plan.¹¹ The peaking factor will be applied to all land uses except for Parks & Recreation parcels. Parks & Recreation parcels will use a peaking factor of 1 since these parcels do not normally experience a significant change in flow like other land use categories.

In large collection systems, the peak flows are attenuated as the flows move downstream. This is partly due to the difference in travel times of the various sewersheds (i.e. the peaks do not arrive at the same time). However, for the purpose of steady state modeling and since the size of the City's sewer collection system is relatively small, it is reasonable and conservative to assume that all the peaks will arrive at the same time to size conveyance and pumping facilities accordingly.


iii. Infiltration/Inflow Rates (I/I)


Peak wastewater flows typically occur during wet weather events as a result of rain-induced I/I. For this master plan, an areal I/I rate of 600 gpd/net acre will be used.¹² The Winters Draft Design Standards does not currently address this topic, but based on conversations with City staff, 600 gal/net acre will be included in the final version of the Design Standards. This I/I value of 600 gpd/net acre is consistent with the City of Woodland's Design Standards.


¹¹ The 1992 Sewer System Master Plan has estimated peaking factor that vary from 2.3 to 4.0 for the City.

¹² The 1992 Sewer System Master Plan did not reference an I/I rate.

ATTACHMENT A

Technical Memorandum

Subject:	Evaluation of Routing Options for the Carter Ranch Pump Station
Prepared For:	Michael Karoly, PE - City of Winters
Prepared By:	Mai-Tram Le, P.E.
Reviewed By:	Glenn E. Hermanson, P.E. Lou Carella, P.E.
Date:	May 5, 2004
Reference:	098.0024

City of Winters – Sewer System Master Plan

In the future, there will be two major sewersheds in the City of Winters. One sewershed will flow south to the existing East Street Pump Station (PS); the other will flow north to the future Railroad Pump Station. The purpose of this TM is to determine which sewershed should include the Carter Ranch Pump Station (CRPS) in the short and long term.

The existing Carter Ranch development and the future Callahan and Ogando Hudson developments all drain to the CRPS. The buildout peak wet weather flow from the CRPS is 0.7 mgd. Three flow routing alternatives were evaluated for the CRPS as follows:

- 1. CRPS flows permanently south to the East Street PS
- 2. CRPS flows temporary south to the East Street PS and will be rerouted north to the future Railroad PS when Winters Highland is developed
- 3. CRPS flows permanently north to the future Railroad PS

Various existing and future sewer collection components will be impacted depending on which sewershed the flow is pumped to. A list of components, impacts, and associated costs are presented in Table 1.

The long-term plan, as recommended in TM 2B & 3B of the 2004 Sewer Master Plan, if development schedule was not an issue, would be to route flow north through Winters Highlands to the future Railroad PS (alternative #3) since it is the lowest cost alternative.

If Winters Highlands is not developed at the same time as the Callahan and Ogando Hudson Estates developments, the City would have the option of selecting between the two remaining alternatives (alternative #1 and #2) to route the CRPS flow south. Neither alternative #1 nor alternative #2 is dependent on the construction of Winters Highlands and therefore be implemented immediately. Both of these alternatives have essentially the same cost. The total costs are essentially the same because the cost for components 8 and 9 are essentially the same and one is used in alternative #1 and the other is used in alternative #2.

Table 1: Comparison of Sewer Routing Options for the Carter Ranch Pump Station

COMPONENT		BUILDOUT SCENARIO FOR CALLAHAN & OGANDO HUDSON ESTATES						
		Flows South to East Street PS		Initially Flows South then in the Future Flows North ^a		Flows North through Winters Highlands to Railroad PS		
1	East Street PS Capacity	Upgrade to 5.0 mgd	\$989	Upgrade to 4.3 mgd	\$824	Upgrade to 4.3 mgd	\$824	
2	East Street PS SCADA	Install	\$75	Install	\$75	Install	\$75	
3	East Street PS Standby Power	450 HP	\$200	360 HP	\$170	360 HP	\$170	
4	East Street PS Forcemain to future Railroad PS	5,000 feet of 14-inch	\$814	5,000 feet of 14-inch	\$814	5,000 feet of 14-inch	\$814	
5	Future Railroad PS Capacity	4.8 mgd	\$1,428	5.4 mgd	\$1,552	5.4 mgd	\$1,552	
6	Conveyance through Winters Highlands	No Action	\$0	Construct	\$65	Construct	\$65	
7	Carter Ranch PS Capacity	Expansion to 0.7 mgd	\$84	Expansion & Flow Reroute	\$127	Expansion & Flow Reroute	\$84	
8	Carter Ranch PS Forcemain to Neimann Street	No Action	\$0	4,000 feet of 10-inch	\$551	4,000 feet of 10-inch	\$551	
9	Grant Avenue/East Street Main	Reroute some flow via Railroad/Abbey	\$534	No action - surcharge is not long-term	\$0	No action	\$0	
10	Grant Avenue Sewer	Rehabilitate if sewers are in bad shape	\$854	Rehabilitate if sewers are in bad shape	\$854	No extensive rehabilitation required	\$0	
11	Connection between Grant Avenue Sewers at CRPS	Construct	\$17	Construct	\$17	No Action	\$0	
	TOTAL	\$5.0 Million	b	\$5.0 Million ^b		\$4.1 Million		

Notes:

1. Costs are rounded up to the nearest \$1,000.

2. Cost estimates are at planning level and include typical contingency for planning level estimation (e.g. planning and engineering design, construction administration and management, environmental assessments and permits, administration costs, and legal fees).

3. SFENR CCI 7997.

Footnotes:

a. Scenario assumes Winters Highland will be developed before the East Street PS exceeds upgraded firm capacity of 4.3 mgd.

b. Cost might be less depending on the condition of the Grant Avenue sewers (Component #10).

Technical Memorandum

City of Winters – Sewer System Master Plan

Subject:	Hydraulic Evaluation for Proposed Ogando Hudson & Callahan Estates Developments
Prepared For:	Michael Karoly, PE - City of Winters
Prepared By:	Mai-Tram Le, P.E.
Reviewed By:	Glenn E. Hermanson, P.E.
Date:	April 20, 2004 (FINAL) March 22, 2004 (DRAFT)
Reference:	098.0023

As part of the Supplemental Contract for the City of Winters' (City) Sewer Master Plan Project, RMC is tasked with reviewing and evaluating the proposed development projects commonly known as Ogando Hudson and Callahan Estates for impact on the sewer collection system. Shown in Figure 1, the Ogando Hudson and Callahan Estates developments are located on the west side of the City. This area is currently undeveloped and zoned for single family homes with an average minimum lot size of 7,000 square feet. The current proposal from developers includes developing the area into low density residential homes consistent with the current zoning designation. In addition, Ogando Hudson and Callahan Estates propose to have the sewage generated by the new homes/developments drain to the existing Carter Ranch Pump Station which ultimately connects to the existing 8-inch and 10-inch sewer main along Grant Avenue. Hence, this technical memorandum (TM) discusses the hydraulic impact of the proposed development on the existing sewer system, especially on the Carter Ranch Pump Station and Grant Avenue sewers, along with recommendations for resolving identified deficiencies.

The TM is organized as follows:

- I. Summary
- II. Sewer Collection System Analysis & Recommendations
- III. Cost Estimates

I. Summary

The proposal for sewage flows from the Ogando Hudson and Callahan Estates developments to be carried by Grant Avenue to the East Street Pump Station is feasible provided that four rehabilitation and expansion projects be constructed to expand and mitigate for increased flows in the sewer collection system. The four projects, estimated to cost a total of \$1.5 million, are shown in Figure 2 and are as follow:

- 1. Enlarge Carter Ranch Pump Station.
- 2. Upsize & rehabilitate the existing 8-inch sewer on Grant Avenue.
- 3. Interconnect Grant Avenue parallel sewers at Main Street.
- 4. Construct Relief Sewer from Railroad Avenue/East Abbey to Main Street.

II. Sewer Collection System Analysis & Recommendations

Based on proposed development maps, land use information, and flow generation criteria used in developing the City's Sewer Master Plan (Sewer Plan), the proposed Callahan Estates development is projected to generate 32,400 gpd and 107,600 gpd of sewage during average dry (ADWF) and peak wet weather flow (PWWF), respectively.¹ The Ogando Hudson development is projected to generate 30,600 gpd and 100,600 gpd of sewage during ADWF and PWWF, respectively

Project 1 - The Carter Ranch Pump Station was built in 2001 to serve the Carter Ranch Development located southeast of the Callahan Estates. This 125 gpm duplex pump station has two constant speed, 3.0 horsepower pumps. With the addition of flows from the Callahan Estates and Ogando Hudson developments, the PWWF at the Carter Ranch Pump station is 487,000 gpd (340 gpm). Hence, the 125 gpm Carter Ranch Pump Station will need to be enlarged to 340 gpm to accommodate proposed flows. The existing wet well could most likely accommodate 340 gpm duplex pumps. Therefore, the expansion of Carter Ranch Pump Station would include new pumps and modification to the existing control panels and electrical equipments.

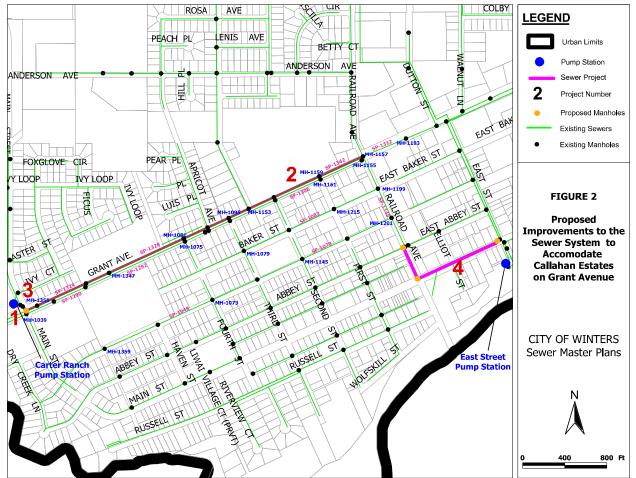


Figure 2: Proposed Modification for the Sewer Collection System

Figure 2 shows the sewer collection system from Carter Ranch Pump Station to the East Street Pump Station and the recommended projects. Carter Ranch Pump Station currently discharges flows to a 10-

¹ PWWF = (ADWF*PF) + I/I. PWWF is also known as the design flow. For more discussion on flow factors and definition, refer to TM 1B2 of the Sewer Master Plan.

inch sewer on Grant Avenue. The 10-inch sewer on Grant Avenue is paralleled by an 8-inch sewer on the north side of the street. The elevation of the 8-inch sewer is higher than the 10-inch sewer by approximately 2 feet. The 8-inch sewer drains into the 10-inch sewer at three connecting locations: 1) east of Cemetery Road, 2) Apricot Avenue, and 3) east of Hemenway Street. At Railroad Avenue, the parallel sewers connect to an 18-inch sewer.

Project 2 - Figure 3 presents the hydraulic profile for the 10-inch Grant Avenue sewer under PWWF conditions. Hydraulic analysis with the City's H2OMap Sewer model showed that the existing parallel sewers in Grant Avenue can not convey the increased flow from the Ogando Hudson and Callahan Estates developments without surcharging the 10-inch sewer. The flow can be conveyed by allowing the 10-inch sewer to surcharge to the elevation of the 8-inch sewer, which then allows sewage to flow from the 10-inch to the 8-inch sewer as shown in Figure 2. This surcharging is acceptable provided that both of the parallel sewers are in good operating condition since the 10-inch sewer is dependent on the capacity of the 8-inch parallel sewer to carry the excess surcharged flows.

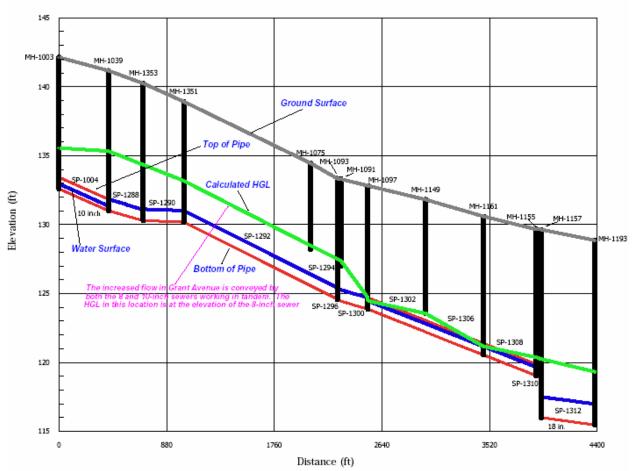


Figure 3: Profile for Grant Avenue 10-inch Sewer

The 8-inch sewer on Grant Avenue is one of the oldest sewers in the City and there is no documentation available on its current condition. One reason why the 10-inch Grant Avenue sewer was constructed and all flows were diverted from the 8-inch sewer to the newer 10-inch sewer could be due to the deteriorating condition of the sewer. Since the structural condition of the 8-inch sewer is unknown and may not be in good operating condition and since the 10-inch sewer is dependent on the capacity of the 8-inch parallel sewer to carry the excess surcharged flows from the proposed developments, it is conservatively recommended that the 8-inch segment from Main Street to Railroad Avenue be rehabilitated.

The rehabilitation of 3,525 feet of 8-inch Grant Avenue sewer is shown as project number 2 in Figure 3. With Grant Avenue being a major roadway for the City, the least disruptive and most cost effective method to rehabilitate the 8-inch sewer would be to use a trenchless construction method and pipe burst the existing sewer with a 10-inch nominal diameter, DR 13.5 pressure class rating HDPE (high density polyethylene) pipe.² Prior to designing the rehabilitation work, it is recommended that the condition of both the 8-inch and 10-inch Grant Avenue sewers be evaluated using CCTV inspection methods to confirm the need for a rehabilitation project. The inspection process would also help to identify which segments along the 3,525 feet stretch require improvements since it might not be necessary to replace all 3,525 feet.

Project 3 - In addition to the rehabilitation of the 8-inch Grant Avenue sewer, it is recommended that an additional connection point be created to link the 10-inch and 8-inch sewers to allow sewage to flow between the sewers. The location of this new connection point is downstream of the Carter Ranch Pump Station at the intersection of Grant Avenue and Main Street. The connecting sewer would be installed from MH-1693 at an elevation of invert 134.8 feet (upstream of MH-1039 on Main Street) to a new manhole constructed for the 8-inch sewer at the Grant Avenue/Main Street intersection at an elevation of 134.7 feet. This new connection will serve to prevent potential overflow due to surcharge in the 10-inch sewer line shown in Figure 2 from segment SP-1294 to SP-1288. The cross-connection should be sloped from the 10-inch to the 8-inch to discourage flows from 8-inch from flowing into this sewer segment during dry weather operations.

Project 4 – As shown on the right hand side of Figure 3, the existing 18-inch sewer in Grant Avenue can not convey the increased flow from the Callahan Estates and Ogando Hudson developments without surcharging. The surcharged condition exists for the 18-inch sewer along Grant Avenue from Railroad Avenue to East Street and continues on East Street to the intersection of East Street and East Main Street where the 18-inch sewer gets steeper as it flows to the East Street Pump Station. In other words, the 18-inch sewer is surcharged for approximately 2,100 feet.

The surcharging of the 18-inch sewer can be eliminated by upsizing the 2,100 feet of impacted 18-inch sewer to 21-inch. One alternative to upsizing the existing 18-inch is to reroute some of the flows south of Grant Avenue to the East Street Pump Station via a new route. The flow reroute alternative, shown in Figure 3 as project number 4, is recommended instead of the upsizing option since rerouting flow would provide relief to the surcharging condition on the 18-inch, provide operational flexibility for the City, and is a less expensive alternative.³ As shown in Figure 3, the recommended new alignment is 1,175 feet total and would run southeast on Railroad Avenue from East Abbey Street. At East Main Street, the new alignment would turn eastward and eventually merges with the existing 18-inch sewer on East Street before flowing to the pump station. Flows south of and on Abbey Street would be diverted via this new alignment.

² The outer diameter of a 10-inch nominal polyethylene pipe is 10.75 inches and the average inside diameter for pressure class DR 13.5 is 9.062 inches.

³ It is estimated that the cost to upsize 2,100 feet of 18-inch to 21-inch sewer is \$618,000. The estimated cost for the recommended alternative is \$316,000. The assumptions used in estimating these costs are detailed in Section III.

III. Cost Estimates

The cost estimates for the recommended projects are shown in Table 1.

Table 1: Estimated Cost for Modifications to the Sewer Collection System

PROJECT & ITEM DESCRIPTION	QUANTITY	UNIT COST	TOTAL ^(a)
1. Enlarge Carter Ranch Pump Station	2 pumps +		
a. Duplex 335 gpm pump station (one duty,	associated	\$50,000 ^(b)	\$50,000
one standby)	equipment		
2. Upsize & Rehabilitate the Existing 8-inch Sewer on Grant Ave.			
a. Condition Assessment (CCTV)	7,050 ft	\$1.50/ft ^(c)	\$11,000
b. Pipe burst 8-inch to 10-inch	3,525 ft	\$140/ft ^(d)	\$494,000
3. Interconnect Sewers on Grant Ave. at Main St.			
a. 8-inch sewer line	50 ft	\$130/ft ^(e)	\$7,000
b. Manhole	1	\$2,500/manhole ^(f)	\$3,000
4. Construct Relief Sewer from Railroad/E. Abbey			
to Main St.			
a. 18-inch sewer line	1,175 ft	\$260/ft ^(d)	\$306,000
b. Manholes	4	\$2,500/manhole ^(f)	\$10,000
	CONSTRU	CTION SUBTOTAL	\$881,000
Construction Contingency		30%	\$265,000
	CONS	TRUCTION TOTAL	\$1,146,000
Implementation ^(g)		30%	\$344,000
		PROJECT TOTAL	\$1,490,000

^(a) Rounded up to the nearest \$1,000. SFENR CCI 7997.

^(b) Based on design projects in Sacramento County.

^(c) Condition assessment for both 8-inch and 10-inch Grant Avenue sewer. Based on average CCTV cost for Sacramento County.

(d) Based on Sacramento Sewage Facilities Expansion Master Plan, \$14/LF/in.

(e) Based on Sacramento Sewage Facilities Expansion Master Plan, \$16/LF/in.

^(f) Assumed pre-cast concrete. Based on estimate for Delta Diablo Sanitation District Bridgehead Improvement Project, Phase I (May 2003)

^(g) Typical for planning level cost estimation. Contingency includes planning and engineering design, construction administration and management, environmental assessments and permits, administration costs, and legal fees.

Technical Memorandum 2B & 3B

City of Winters – Sewer System Master Plan

Subject:	Sewer System Modeling Results & Recommended System Improvements - FINAL
Prepared For:	Michael Karoly, PE - City of Winters
Prepared By:	Mai-Tram Le, P.E.
Reviewed By:	Glenn E. Hermanson, P.E.
Date:	August 2, 2004 (FINAL) January 20, 2004 (DRAFT)
Reference:	098.0022

I. Introduction

This Technical Memorandum (TM) presents the sewer system modeling results and recommended system improvements for the City of Winters' (City) Sewer Master Plan. The modeling results, system analysis, and recommended system improvements presented in this TM will be used as a basis to develop a prioritized sewer system capital and maintenance program for the City.

This TM is organized as follows:

- I. Introduction
- II. Capacity Deficiency Criteria
- III. Sewer System Modeling Results
- IV. Conveyance Capacity Deficiencies
- V. Pump Station Evaluation & Recommendations
 - A. East Street Pump Station Forcemain Analysis
- VI. Proposed Sewer Collection System Improvements and Expansions
 - A. Existing Sewer Collection System Improvements
 - B. Future Sewer Collection System Expansions

II. Capacity Deficiency Criteria

Table 1 summarizes the criteria that were used to determine conveyance and pumping capacity deficiencies.

Table 1: Capacity Deficiency Criteria

	CAPACITY DEFICIENCY CRITERIA
Conveyance	 A pipe is considered deficient if either or both of the following condition are met with design flows ^a: 1. There is potential for manhole overflow ^b 2. The ratio of the modeled design flow to the calculated pipe hydraulic capacity ^c exceeds 1.2 and there is more than 4 feet of surcharging ^d
Pumping	A pump station is considered deficient if its firm capacity ^e is less than calculated design flows ^a

a. As established in the DRAFT Wastewater Design Flow Criteria TM 1B2, City of Winters – Sewer System Master Plan, November 10, 2003.

b. It is assumed that there is potential for manhole overflow if the hydraulic gradeline is less than 3 ft. below the ground surface. This definition accounts for potential error in rim elevation data and model accuracy. This criterion is of primary importance: a manhole overflow could represent public health risk, carries significant fines imposed by the Regional Water Quality Control Board, and could result in increase regulatory scrutiny through the pending EPA's CMOM regulations.

c. The hydraulic capacity is calculated based on the physical characteristics of the pipe and does not account for reduced capacity due to root intrusion, excessive grease accumulation, or debris. The City is responsible to ensure that 100% of the pipe capacity is available for wastewater flow.

d. Criterion allows the existing system to operate under surcharge conditions for short period of time during peak wet weather flow.

e. Firm capacity is the capacity of the pump station with the largest pump not operating.

III. Sewer System Modeling Results

A hydraulic model was developed as part of this Sewer System Master Plan using H2OMap Sewer Version 5.0 model. The model of the collection system included all sewers 10-inches and larger, key 8-inch sewers, and, in the downtown area, key 6-inch sewers. Load allocation for the existing collection system is shown in Figure A1 in Attachment A. The H2OMap Sewer hydraulic model was run under the existing and buildout design flow conditions.¹ Potential conveyance capacity deficiencies under each scenario were then identified based on criteria established in Table 1.

Figures A2 to A5 in Attachment A show the modeling results under the existing and buildout average dry (ADWF) and peak wet weather flow (PWWF) conditions for the existing collection system. As shown in Figure A2, the City's existing sewer conveyance system does not have any deficiencies (i.e. surcharge or potential overflows) under existing (as of September 2002) average dry weather conditions. Under existing peak wet weather (i.e. design flow conditions), Figure A3 shows that the system has 7 surcharged sewers, 7 undersized sewers, and 2 potential overflow manholes. For the purpose of this TM, surcharged sewers are pipes where the ratio of the modeled design flow to the calculated pipe hydraulic capacity (q/Q) exceeds 1.0 but is less than 1.2 and undersized sewers are pipes where the q/Q ratio exceeds 1.2.

Figures A4 and A5 presents the hydraulic modeling results for the existing conveyance system under buildout flow conditions and is included for references only to emphasize the point that the City will definitely need to construct more sewer infrastructure in order to convey the additional sewer generated as development occurs. The existing conveyance system was evaluated in depth to identify potential capital improvement projects after a proposed citywide layout of future sewers and pump stations was incorporated into the model.

¹ As established in the *DRAFT Wastewater Design Flow Criteria TM 1B2*, City of Winters – Sewer System Master Plan, November 10, 2003

IV. Conveyance Capacity Deficiencies

Based on inputs from the City, the Drainage Master Plans and the proposed Winters Highlands and Callahan Estates developments, a proposed citywide layout of future sewers and pump stations were added to the City's existing conveyance system for analysis of future land use scenarios. The proposed citywide layout of future sewers and pump stations is shown in Figure 1. Load allocations for the future sewer collection system are shown in Figure A6 in Attachment A.

Figure 1 shows six potential deficiency locations for the existing sewer collection system under the PWWF design condition at buildout. These locations showed a potential deficiency even after the incorporation and rerouting of future developments to proposed future sewers in the collection system.

The hydraulic profiles for the six identified deficiency locations are presented in Attachment B. Table 2 summarizes the deficiencies and pipe characteristics for each location. The deficiencies, pipe characteristics, recommendation for improvements, and potential for cost sharing are further discussed for each location below. Additional information on the recommended projects are presented in Section VI.A of this TM while detailed cost and will be presented in the 2004 Sewer Master Plan Report.

Location a – The sewer of interest for this location on First Street consists of one 6-inch sewer segment (SP-1132) that is approximately 134% over capacity. This deficiency could be resolved by upsizing this 155 foot segment to an 8-inch sewer to match the downstream sewers. However, since this pipe is relatively deep (at 9 feet) with a low risk of causing an overflow and the surcharging is localized; it is recommended that the City does not pursue this project.

Location b – As shown in the profile for location b in Attachment B, pipe SP-1290 is a flat 10-inch sewer on Grant Avenue. The slope for this sewer could not be verified through existing records and survey data. Hence, it is recommended that the City investigate/survey sewer slopes for this area and perform further analysis before pursuing any project.

Location c – This location has three 18-inch sewers (SP-1182, SP-1180, and SP-1178) that currently convey flows, including the 155 gpm flows from El Rio Villa, to the East Street Pump Station. Under the buildout PWWF scenario, El Rio Villa flows are diverted north to Future Pump Station C (as shown in Figure 1). Even with the El Rio Villa flow being diverted north, location c still shows a potential deficiency under the buildout PWWF scenario.

The profile for these 18-inch sewers showed that they are relatively deep (at 12 feet) with a low risk of causing an overflow since the calculated hydraulic grade line (HGL) is approximately 11 feet below the ground surface. In addition, the surcharging is localized. Therefore, it is recommended that the City does not pursue any project for this location.

Location d – This location consists of three 6-inch sewers (SP-1048, SP-1078, and SP-1080) along Edwards Street that has the potential to be approximately 125% over capacity if flows from the undeveloped Creekside Estates development are routed to the Edwards Street sewers once it is developed. These potential deficiencies could be resolved by upsizing the Edwards Street sewers to 8-inch.

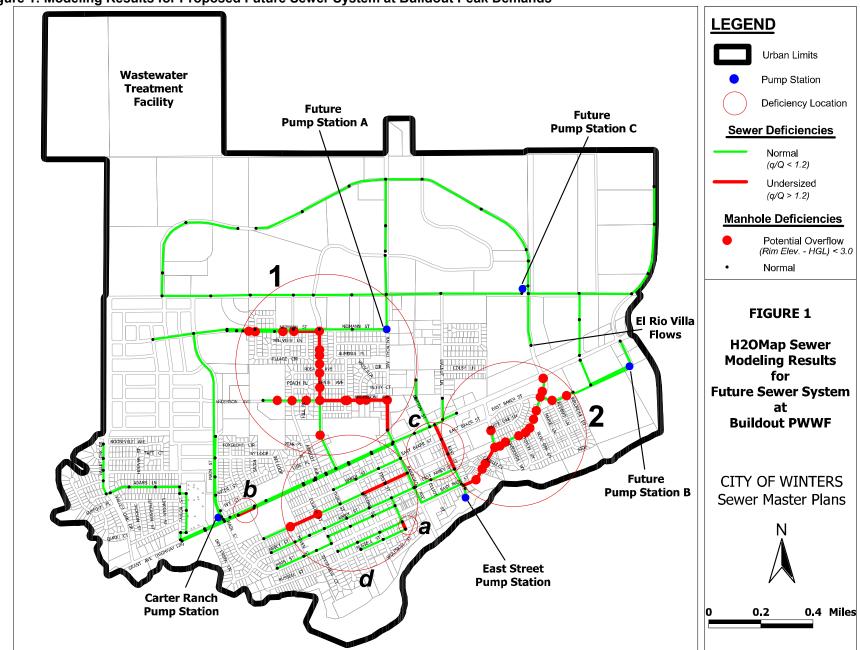
Since the Creekside Estates parcels are currently undeveloped, it is recommended that the City does not pursue this project at this time. Instead, it is recommended that a detailed study to evaluate the sewer capacity available in the Edward Street sewers be conducted prior to the development of the Creekside Estates parcels. The study should confirm that flows from Waggoner Elementary School are not

discharged to Edwards Street, confirm existing and buildout flows from Waggoner Elementary School, and evaluate options for routing flows from the Creekside Estates.²

Location 1 – The deficiency for Location 1 consists of a series of nine 8-inch and three 6-inch sewer, starting on Railroad Avenue and continuing on to Anderson Avenue and Hemenway Street, which are undersized. The undersized sewers caused a long bottleneck with potential sewer overflow reaching as far back as Neimann Street as a result.³ Due to the high risk of having potential wet weather overflows, it is recommended that the City pursue projects to upsize these sewer segments.

Deficiencies for Location 1 exist even without any additional flows from future developments. For this reason, existing ratepayers should financially anticipate in at least up-sizing the 8-inch sewer on Railroad Avenue.

The configuration of the sewer on Hemenway Street between Anderson and Grant Avenues indicates that it would act as an overflow relief sewer during surcharge conditions. The computer software (H_2OMap Sewer) does not have the level of sophistication necessary to model this overflow relief. Therefore, additional analysis should be performed before implementing this project. In addition to additional analysis, the manhole on Hemenway Street should be uncovered (they are currently paved over).


Location 2- The deficiency for Location 2 consists of a series of four sewers on East Main Street immediately east of East Street to Morgan Street. A 6-inch sewer segment (SP-1286) coupled with three undersized sewers immediately upstream causes a long bottleneck with potential sewer overflow to reach as far back as East Baker Street and Grant Avenue. Due to the high risk of having potential wet weather overflows, it is recommended that the City pursue projects to upsize these four sewer segments

The severe bottleneck in the 6-inch sewer exists under existing peak wet weather conditions as shown in Figure A3 in Attachment A. Hence, existing ratepayers should financially participate in upsizing this sewer.

Under buildout PWWF, with additional flows from the Gateway area, deficiencies for Location 2 expanded to include three 10—inch sewers (SP-1284, SP-1282, and SP-1280) immediately upstream of the 6-inch sewer. Since the deficiencies for these three sewers were triggered as a result of additional flows from developments in the Gateway Area, future developers in this area should anticipate financially participating in upsizing these segments.

² As directed by the City, flows from Waggoner Elementary School are currently loaded to the Grant Avenue sewers for a conservative analysis of the existing capacity along Grant Avenue.

³ Analysis with the "Creekside Estates" and "Cottages" parcels loaded to the Grant Avenue sewers resulted in less severe deficiencies for Location 1.

Figure 1: Modeling Results for Proposed Future Sewer System at Buildout Peak Demands

PIPE ID	STREET	DIAMETER (in.)	LENGTH (ft.)	DEPTH (ft.)	CAPACITY DEFICIENCIES (q/Q) ^c			
	LOCATION a							
SP-1132	First Street northwest of Russell Street	6	155	9	1.342			
	LOCA	TION b						
SP-1290	Grant Avenue northeast of Main Street	10	330	8	1.309			
	LOCA	TION c						
SP-1178	East Street northwest of East Abbey St.	18	315	13	1.281			
SP-1180	East Street northwest of East Edward St.	18	310	12	1.504			
SP-1182	East Street southeast of Grant Avenue	18	310	12	1.237			
	LOCA	TION d						
SP-1080	Edwards Street west of Railroad Avenue	6	465	10	1.310			
SP-1078	Edwards Street west of First Street	6	470	7	1.236			
SP-1048	Edwards Street west of Fourth Street	6	570	5	1.201			
	LOCA	TION 1						
SP-2292	Railroad Avenue south of Anderson Ave.	8	575	11	2.289			
SP-1009	Anderson Avenue west of Railroad Ave.	8	405	10	2.318			
SP-2284	Anderson Avenue west of Railroad Ave.	8	110	10	1.880			
SP-2276	Anderson Avenue west of Railroad Ave.	8	285	9	1.792			
SP-2274	Anderson Avenue west of Railroad Ave.	8	20	9	1.816			
SP-2242	Anderson Avenue east of Hemenway St.	8	480	10	1.752			
SP-2240	Hemenway Street north of Anderson Ave.	8	245	10	1.448			
SP-2238	Hemenway Street south of Rosa Ave.	8	275	9	1.555			
SP-2228	Hemenway Street north of Rosa Ave.	8	170	9	1.412			
SP-2208	Hemenway Street south of Neimann St.	6	110	7	2.022			
SP-2206	Hemenway Street south of Neimann St.	6	350	7	1.781			
SP-2204	Neimann Street west of Hemenway St.	6	485	8	2.089			
	LOCA	TION 2						
SP-1286	East Main Street east of East Street	6	260	17	5.605			
SP-1284	East Main Street east of East Street	10	240	17	1.396			
SP-1282	East Main Street east of Lauren Court	10	125	15	1.379			
SP-1280	East Main Street east of Caselli Court	10	340	14	1.349			
	1	1	1					

Table 2: Potential Wet Weather Conveyance Capacity Deficiencies ^a

^a Based on H₂OMap Sewer hydraulic model runs under the existing and buildout design flow conditions
 ^b Refers to H₂OMap Sewer numbering system
 ^c Expressed as ratio of the modeled design flow to the calculated pipe hydraulic capacity

V. Pump Station Evaluation & Recommendation

The City currently operates and maintains four pump stations: 1) Walnut Lane, 2) El Rio Villa, 3) Carter Ranch, and 4) East Street. For the purpose of this master plan, it was assumed that flows at the Walnut Lane and El Rio Villa Pump Stations are at buildout and, hence, the capacity of these pumps stations is adequate for future conditions.

Hydraulic analysis showed that at buildout, the City will need three more pump stations in order to convey all flows generated throughout the City to the existing wastewater treatment facility at the northwest corner of the urban limits boundary. The proposed locations of these three new pump stations (i.e. Future Pump Station A, Future Pump Station B, and Future Pump Station C) are shown in Figure 2. Future Pump Station C (Project no. 11 in Figure 8) has 2 conveyance alternatives that affect the sizing of Future Pump Station A. The firm capacity of these pump stations are as follows:

1.	Future Pump Station A	= 3,800 gpm/5.5 mgd	(under Alternative 1 of Project 11)
		= 1,950 gpm/2.8 mgd	(under Alternative 2 of Project 11)
2.	Future Pump Station B	= 310 gpm/0.45 mgd	
3.	Future Pump Station C	= 1,850 gpm/2.7 mgd	

In addition to the three new pump stations, analysis showed that the Carter Ranch and East Street Pump Stations will also have to be expanded to convey all the flows generated at buildout peak wet weather conditions.

The Carter Ranch Pump Station (PS) was designed to convey flows from the Carter Ranch subdivision to Grant Avenue until the land and infrastructure north of Carter Ranch (i.e. Winters Highlands and Callahan Estates) is developed and allows the sewage to flow north. Since the Carter Ranch PS was designed to solely convey flows generated by the Carter Ranch subdivision, the capacity of this duplex pump station is 125 gpm (i.e. 0.18 mgd). Land use analysis, load allocation, and hydraulic modeling showed that at buildout, with the addition of flows from the Callahan and Winters Highlands subdivisions, the Carter Ranch PS will need to be expanded to approximately 400 gpm (i.e. 0.58 mgd) in order to convey all the flows coming into the pump station northward to Neimann Street.

The East Street PS is currently the main pump station for the City. All sewers currently drain to this pump station before being lifted and conveyed approximately 2.7 miles to the wastewater treatment facility via the 14-inch East Street PS forcemain. This pump station has three pumps, two at 88 hp and one at 47 hp. Hence, the existing firm capacity of this pump station, with one of the 88 hp pump being out of service, is 2,600 gpm (3.75 mgd). Under buildout conditions, flow from the Carter Ranch and El Rio Villa Pump Stations will cease to enter this pump station. However, even without the flow from Carter Ranch and El Rio Villa, the East Street PS will still need to be expanded to convey 3,300 gpm (4.75 mgd) at buildout during PWWF events.

As the flows to the East Street PS and pressures within the East Street Force Main increase, it will become critical to upgrade portions of the pump station instrumentation. In particular, the flow data and pressure data should be recorded and stored electronically and alarm systems for the pump station functions (e.g. high water, pump failure, etc.) should be upgraded. Collecting this data will allow pump station and forcemain performance evaluations to be completed, which will allow timing of larger projects (e.g. parallel force main) to be determined.

A. East Street Pump Station Forcemain Analysis

The existing East Street PS forcemain is a 14-inch asbestos cement pipe. The pressure class of this cement pipe is unknown at this time. At the design flowrate of 4.75 mgd, the operating pressure would be 143 psi. This operating pressure may be greater than the pressure class rating this pipe. Therefore, it is

recommended that a 14-inch parallel forcemain be constructed in the future. This parallel forcemain would also allow the existing forcemain to be taken out of service during dry weather for condition assessment and maintenance.

VI. Proposed Sewer Collection System Improvements and Expansions

Proposed sewer collection system improvements and expansions were developed based on the design criteria presented in TM 1B of the Sewer Master Plan.⁴ These projects are shown in Figure 2 and listed in Tables 3 and 4.

A. Existing Sewer Collection System Improvements

Two projects listed in Table 3 are recommended to improve the existing sewer collection system in order to avoid potential sewer over flow under the buildout peak wet weather scenario. In general, replacement pipes were preferred over parallel pipes because: 1) the difference in the parallel and replacement pipe was generally only one or two diameters; 2) long-term maintenance is more efficient with fewer pipes and manholes in the system; and 3) underground utility congestion is minimized with fewer pipes.

	STREET	EXISTING DIAMETER (in.)	LENGTH (ft.)	CAPACITY DEFICIENCIES (q/Q) ^c	RECOMMENDED RELIEF DIAMETER (in.)			
	PROJECT 1 – Anderson Avenue Sewer Upsize							
SP-2292	Railroad Ave. south of Anderson Ave.	8	575	2.289	12			
SP-1009	Anderson Ave. west of Railroad Ave.	8	405	2.318	10			
SP-2284	Anderson Ave. west of SP-1009	8	110	1.880	10			
SP-2276	Anderson Ave. west of SP-2284	8	285	1.792	10			
SP-2274	Anderson Ave. west of SP-2276	8	20	1.816	10			
SP-2242	Anderson Ave. east of Hemenway St	8	480	1.752	10			
SP-2240	Hemenway St. north of Anderson Ave.	8	245	1.448	10			
SP-2238	Hemenway Street south of Rosa Ave.	8	275	1.555	10			
SP-2228	Hemenway Street north of Rosa Ave.	8	170	1.412	10			
SP-2208	Hemenway St. south of Neimann St.	6	110	2.022	8			
SP-2206	Hemenway St. south of Neimann St.	6	350	1.781	8			
SP-2204	Neimann Street west of Hemenway St.	6	485	2.089	8			
	PROJECT 2 – Eas	t Main Street	t Sewer U	osize				
SP-1286	East Main St east of East St	6	260	5.605	12			
SP-1284	East Main St east of SP-1286	10	240	1.396	12			
SP-1282	East Main St east of Lauren Ct	10	125	1.379	12			
SP-1280	East Main St east of Caselli Ct	10	340	1.349	12			

Table 3: Proposed Improvement Projects ^a

^a Based on H₂OMap Sewer hydraulic model runs under buildout design flow conditions

^b Refers to H₂OMap Sewer numbering system

⁴ TM 1B - Sewer Collection Design Criteria for Master Planning, RMC, October 2003.

^c FIRM capacity is the capacity with the largest pump not operating.

^d Expressed as ratio of the modeled design flow to the calculated pipe hydraulic capacity

B. Future Sewer Collection System Expansions

The proposed future sewer collection system expansion layout on Figure 2 was developed based on inputs from the City, the Drainage Master Plans, the proposed Winters Highlands and Callahan Estates developments, and hydraulic modeling of the buildout peak wet weather scenario. In all, there are twenty sewer and pump station expansion projects listed in Table 4 and shown in Figure 2.

PIPE ID ^b	DESCRIPTION	PROPOSED DIAMETER (in.)	LENGTH (ft.)	PROPOSED PUMP STATION FIRM CAPACITY [°]
PROJECT	3 – Carter Ranch Pump Station Expansion			
	Carter Ranch Pump Station Expansion ^d			400 gpm/0.68 mgd
PROJECT	4 – Carter Ranch Force Main			
SP-2158	Carter Ranch Pump Station Forcemain	10	4,000	
PROJECT	5 – Pump Station on Railroad Avenue			
	Future Pump Station A			3,800 gpm/5.5 mgd
PROJECT	6 – Neimann Street Sewers			
SP-30041	Neimann Street east of Main Street	15	1,100	
SP-30111	Neimann Street east of SP-30041	15	540	<u>Note:</u> The Neimann
SP-30113	Neimann Street east of Village Circle	15	720	Street Sewers Project
SP-30115	Neimann Street west of Hemenway Street	15	500	is parallel to the existing sewers in
SP-30021	Neimann Street east of Hemenway Street	15	630	Neimann Street
SP-30023	Neimann Street west of Railroad Avenue	15	650	
PROJECT	7 – Neimann Street/Winters Highlands Sewe	ers		
SP-30039	Neimann Street west of Main Street	12	800	
PROJECT	8 – Pump Station for Gateway Area			
	Future Pump Station B			310 gpm/0.45 mgd
PROJECT	9 – Pump Station B Forcemain			
SP-30015	Gateway Area Pump Station Forcemain	8	360	
PROJECT	10 – Gateway Area Sewers			
SP-30001	South of Grant Avenue & Timbercrest Road	8	510	
SP-30003	South of Grant Avenue & County Road 90	8	510	
SP-30007	West of Pump Station B	8	840	
PROJECT	11 – Pump Station for the Northeastern Are	a		
	Future Pump Station C			1,850 gpm/2.7 mgd
	Option 1 – Gravity Flow to Pump Station A			See Project 16
	Option 2 – Forcemain to the Parallel East Street Pump Station Forcemain	14	2,750	

Table 4: Proposed Expansion Projects ^a

PIPE ID ^b	DESCRIPTION	PROPOSED DIAMETER (in.)	LENGTH (ft.)	PROPOSED PUMP STATION FIRM CAPACITY [°]			
PROJECT	PROJECT 12 – Northeastern Area Sewers						
SP-30087	Northmost Sewer on County Road 90	8	710				
SP-30089	County Road 90 south of SP-30087	10	950				
SP-30091	County Road 90 south of SP-30089	10	500				
SP-30093	Moody Slough Road west of County Road 90	10	990				
SP-30085	Moody Slough Road west of SP-30093	15	950				
SP-30077	North Main Street north of Moody Slough Rd.	15	140				
SP-30109	North Main Street to Future Pump Station C	18	110				
PROJECT	13 – Timbercrest Road Sewers						
SP-30105	Timbercrest Road north of Grant Avenue	8	680				
SP-30083	Timbercrest Road north of SP-30105	8	520				
PROJECT	14 – North Main Street Sewers						
SP-30081	North Main Street south of Moody Slough	8	980				
	Reroute El Rio Villa Forcemain	6	600				
PROJECT	15 – Main Street Loop Sewers						
SP-30053	Westernmost Sewer on Loop for Project 15	8	1,100				
	Main Street Loop east of SP-30053	8	1,020				
SP-30057	Main Street Loop west of Railroad Avenue	8	720				
SP-30059	Railroad Avenue south of Main Street Loop	8	880				
SP-30061	Railroad Avenue south of SP-30059	8	480				
SP-30067	Main Street Loop east of Railroad Avenue	10	690				
SP-30069	Main Street Loop east of SP-30067	12	1,260				
SP-30071	Main Street Loop southeast of SP-30069	12	1,190				
SP-30099	Main Street Loop south of SP-30071	12	220				
SP-30101	Main Street Loop south of SP-30099	12	480				
PROJECT	16 – Moody Slough Sewers						
	Main Street Loop west of SP-30053	8	510				
SP-30051	Main Street Loop south of SP-30049	10	690				
SP-30027	Main Street Loop south of SP-30051	10	440				
SP-30029	Moody Slough Road east of Main Street	12	920				
SP-30097	Moody Slough Road east of SP-30029	12	570				
SP-30031	Moody Slough Road east of SP-30097	12	820				
SP-30033	Moody Slough Road east of SP-30031	12	380				
SP-30035	Moody Slough Road east of SP-30033	12	730				
SP-30037	Moody Slough Rd. west of Railroad Avenue	12	650				
SP-30025	Railroad Avenue south of Moody Slough Rd.	24	660				
SP-30063	Railroad Avenue north of Moody Slough Rd.	8	740				
SP-30103	Moody Slough Road east of SP-30079	18	1,530	Project 11			
SP-30079	Moody Slough Road east of Railroad Ave.	18	1,030	(Option 1)			
SP-30103	Moody Slough Road east of SP-30079	8	1,530	Project 11			
SP-30079	Moody Slough Road east of Railroad Ave.	8	1,030	(Option 2)			

PIPE ID ^b	DESCRIPTION	PROPOSED DIAMETER (in.)	LENGTH (ft.)	PROPOSED PUMP STATION FIRM CAPACITY [°]				
PROJECT	PROJECT 17 – East Street Pump Station Expansion							
	East Street Pump Station Expansion ^e			3,300 gpm/4.75 mgd				
	East Street Pump Station Instrumentation							
PROJECT	18 – Parallel East St. PS Forcemain 1 (from I	Pump Station	A to Treat	ment Plant)				
	Parallel Forcemain Segment #1	14	9,000					
PROJECT	19 – Parallel East St. PS Forcemain 2 (from I	East St. PS to	Pump Stat	tion A)				
	Parallel Forcemain Segment #2	14	5,000					
PROJECT	20 – Relief Sewer from Railroad/East Abbey	to Main Stree	t					
SP-30119	Railroad Ave. and East Main Street	18	1,175					
PROJECT	21 – Upsize & Rehabilitate the Existing 8-inc	h Sewer on G	irant Aven	le				
SP-1324	Grant Avenue east of Main Street	10	610					
SP-1326	Grant Avenue east of Main Street	10	240					
SP-1328	Grant Avenue east of Main Street	10	780					
SP-1330	Grant Avenue east of Fourth Street	10	255					
SP-1334	Grant Avenue west of Third Street	10	220					
SP-1336	Grant Avenue east of Third Street	10	210					
SP-1338	Grant Avenue east of Hemenway Street	10	275					
SP-1340	Grant Avenue east of Second Street	10	475					
SP-1342	Grant Avenue west of Railroad Avenue	10	460					
PROJECT	22 – Interconnect Sewers on Grant Avenue	at Main Street						
	Grant Avenue at Main Street	8	50					

^a Based on H₂OMap Sewer hydraulic model runs under buildout design flow conditions

^b Refers to H₂OMap Sewer numbering system

^c Firn capacity is the capacity of the pump station with the largest pump not operating

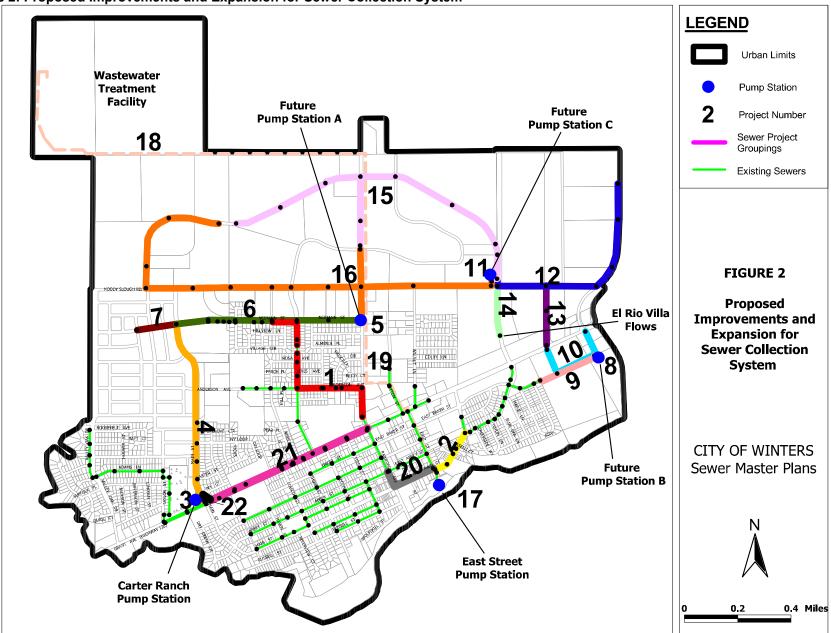
^d The existing capacity of the Carter Ranch Pump Station is 125 gpm

^e The existing capacity of the East Street Pump Station is 2,600 gpm

The proposed future expansion includes the rerouting of flows from El Rio Villa to Future Pump Station C. The re-routing project should be combined with project no. 14.

Projects 20, 21, and 22 will convey interim flows from Winters Highland, Callahan Estates, and Ogando Hudson developments to the East Street PS until additional developments (i.e. any development north of Moody Slough Road) necessitate the construction of Future Pump Station A (Project 5). At this point, it will be necessary to expand the Carter Ranch PS (Project 3) and construct the Carter Ranch forcemain from the PS to Neimann Street (Project 4). Depending on the timing of developments (e.g. Gateway Area), the East Street PS might need to be expanded (Project 17) to accommodate additional flows prior to the construction of Future Pump Station A.⁵

For project no. 11 (i.e. Future Pump Station C), there are two alternatives for conveying flows from this pump station to the wastewater treatment facility: 1) gravity flow to Future Pump Station A, and 2) forcemain conveyance directly to the wastewater treatment facility. Table 5 provides a comparison of project components between the two alternatives. Alternative 1 includes draining the flows from Future


⁵ Additional discussions on routing options for flows from the Callahan Estates, Ogando Hudson developments, and Carter Ranch PS are presented in the *Hydraulic Evaluation for Proposed Ogando Hudson & Callahan Estates Developments TM* and the *Evaluation of Routing Options for the Carter Ranch Pump Station TM*

Pump Station C into Future Pump Station A on Railroad Avenue via the gravity sewer on Moody Slough Road. Under Alternative 1, sewage entering Future Pump Station C would be pumped twice and have a longer detention time in the system, possibly leading to odorous and corrosive environment. Furthermore, an 18-inch sewer segment on Moody Slough Road would mean that laterals for parcels fronting the road would have to connect to a manhole or would require a short collector sewer since they could not connect directly into the 18-inch main.

Under Alternative 2, sewage entering Future Pump Station C would be pump directly to the East Street Pump Station forcemain or a parallel forcemain to the East Street forcemain on Railroad Avenue and be conveyed directly to the wastewater treatment facility. The additional cost to construct the 2,600 feet forcemain could be offset by having a smaller Future Pump Station A and a reduction in sewer size on Moody Slough Road and Railroad Avenue. Furthermore, parcels fronting Moody Slough Road could connect directly to the 8-inch line. Therefore, Alternative 2 is recommended for Project No. 11.

Table 5: Conveyance Alternative Comparison for Project No. 11 (Future Pump Station C)

ALTERNATIVE	MOODY SLOUGH RD.	RAILROAD AVE.	FORCEMAIN	FUTURE PUMP STATION A
1 – Gravity Flow to Future Pump Station A	2,600 feet of 18 in. sewers	700 feet of 24 in. sewers	2,600 feet	3,800 gpm (5.5 mgd)
2 – Forcemain to Wastewater Treatment Facility	2,600 feet of 8 in. sewers	700 feet of 15 in. sewers	150 feet	1,950 gpm (2.8 mgd)

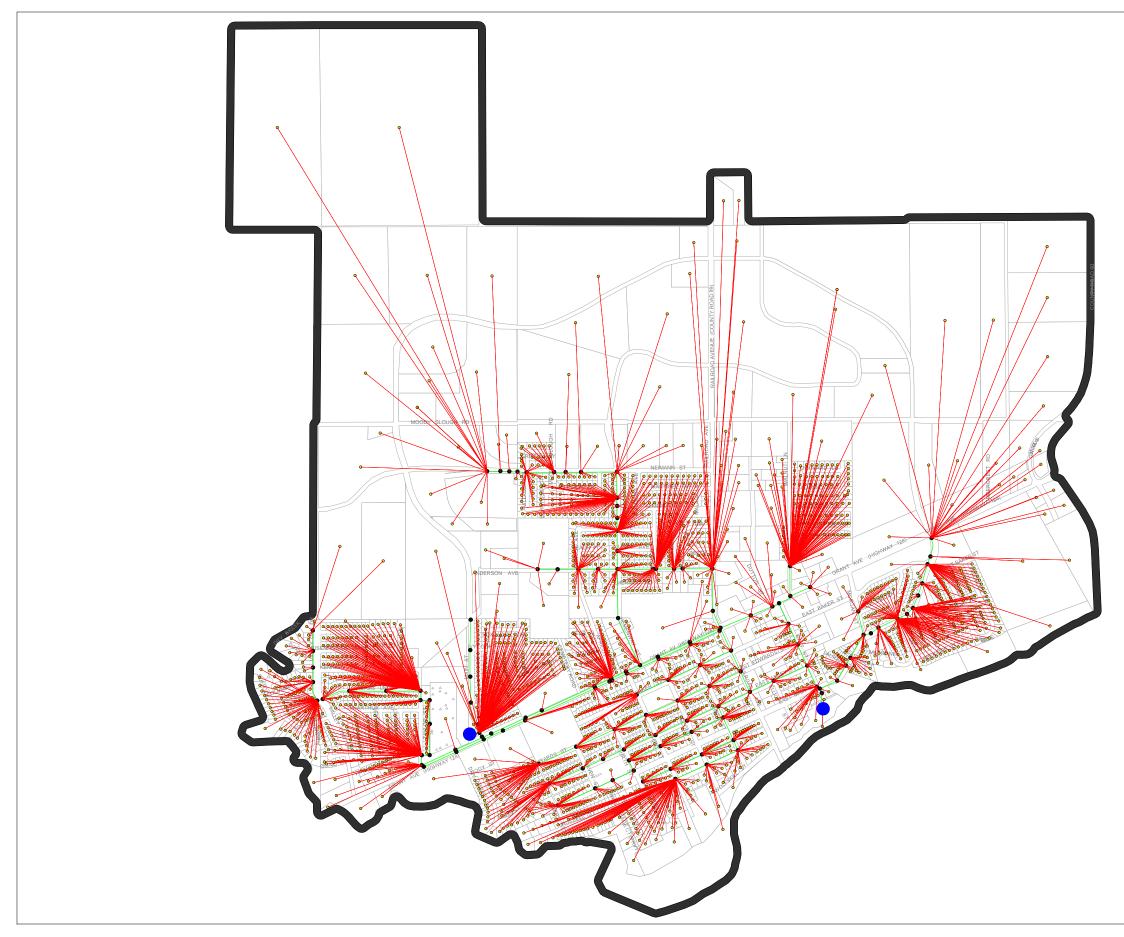
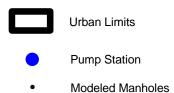
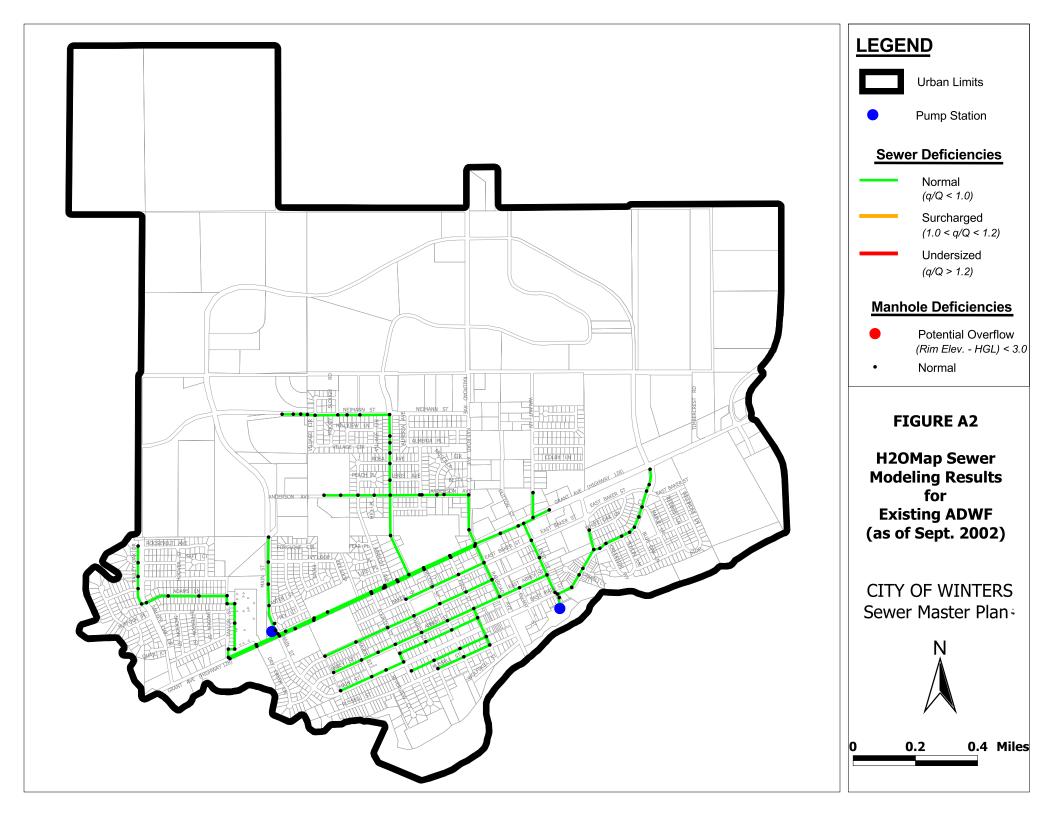


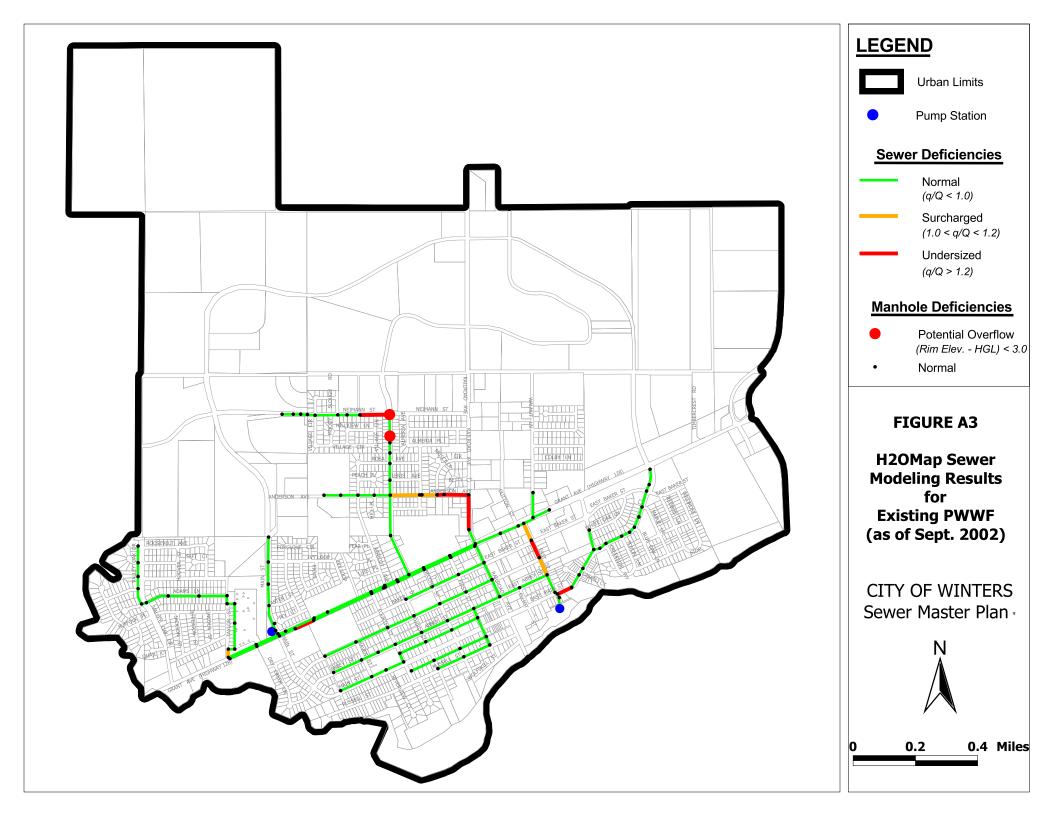
Figure 2: Proposed Improvements and Expansion for Sewer Collection System

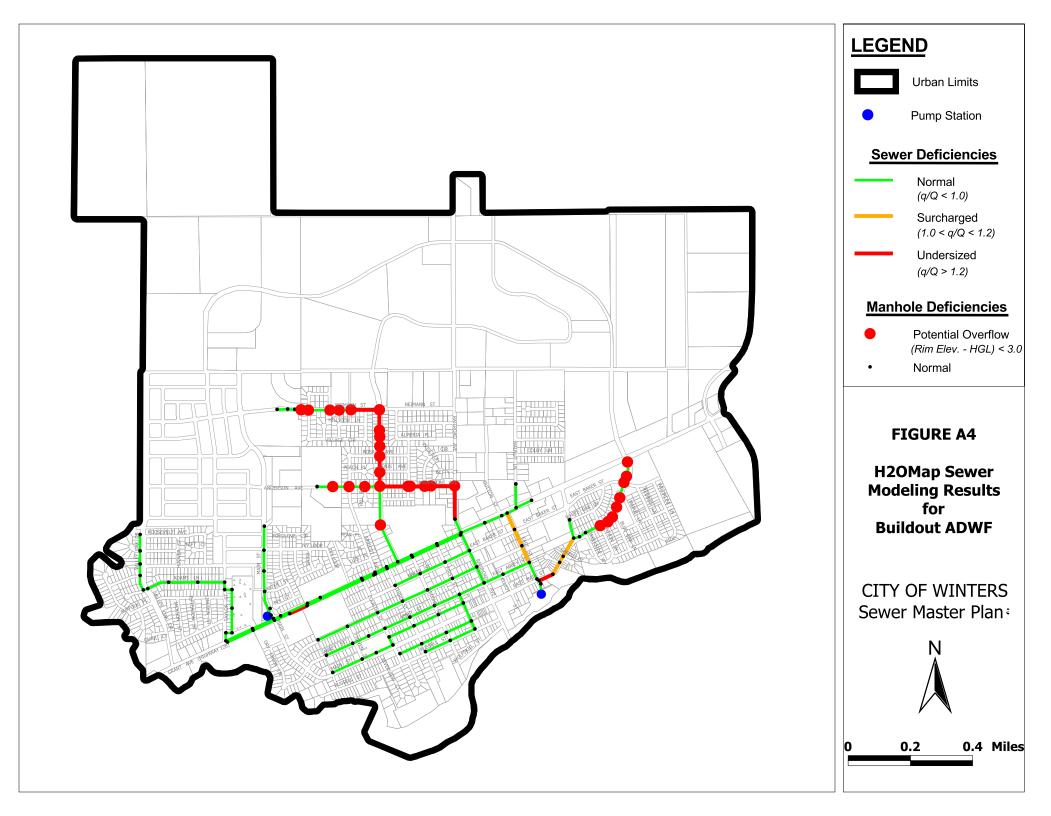
ATTACHMENT A

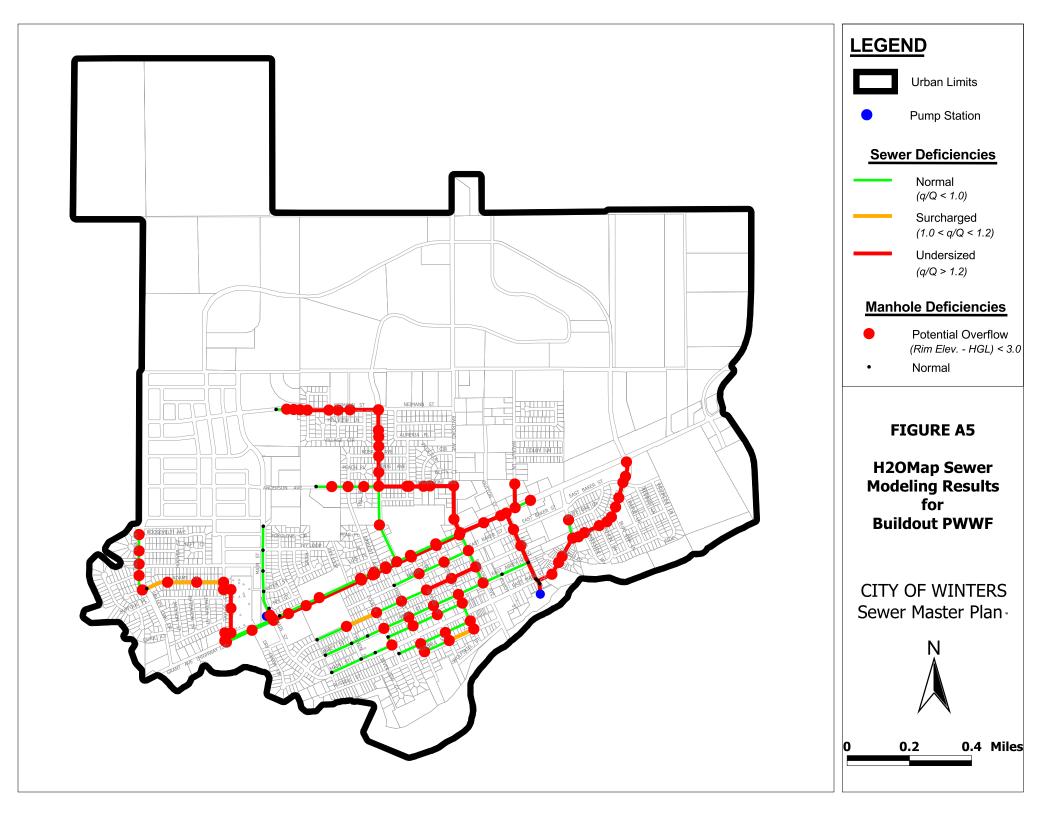

TM Graphics

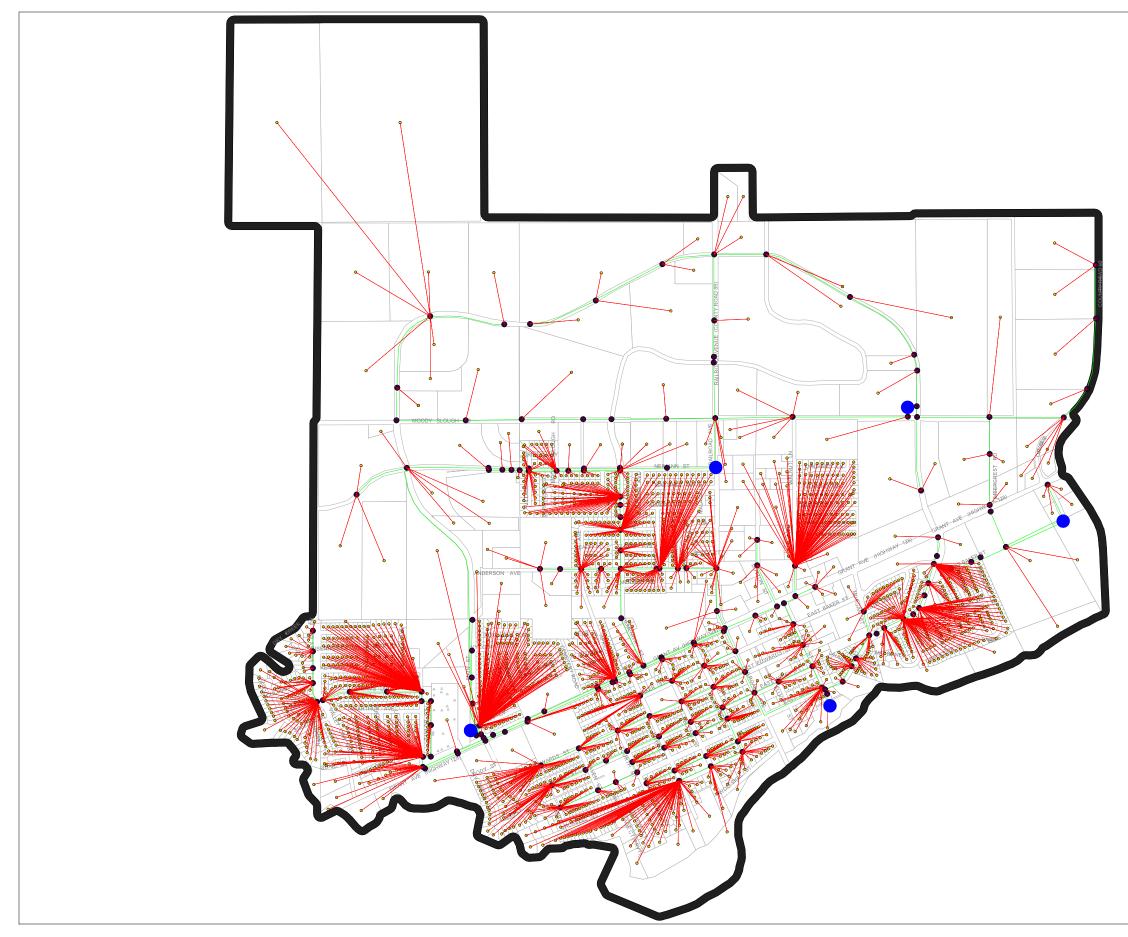
LEGEND


- Modeled Sewers
- Parcel Loading Point


FIGURE A1


Load Allocation for Existing Sewer Collection System


CITY OF WINTERS Sewer Master Plan



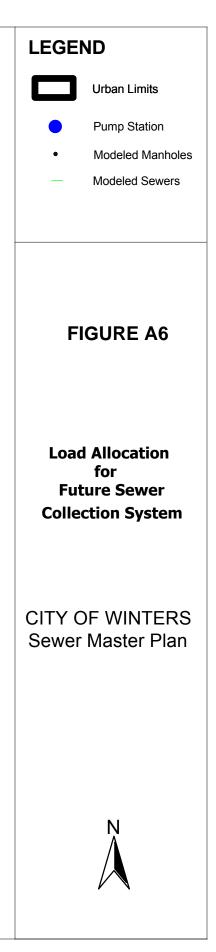
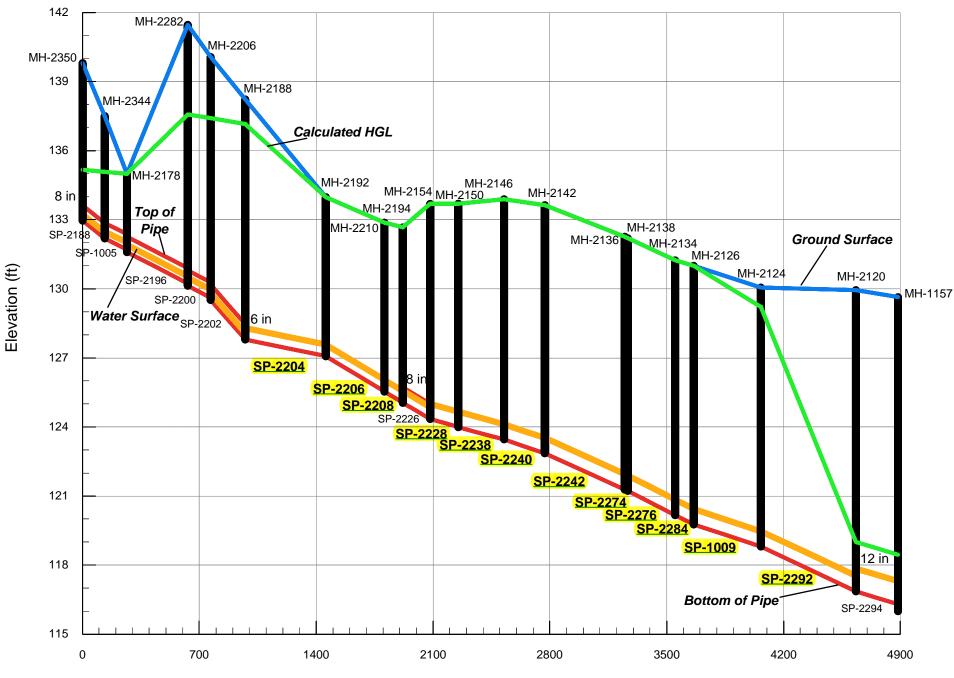
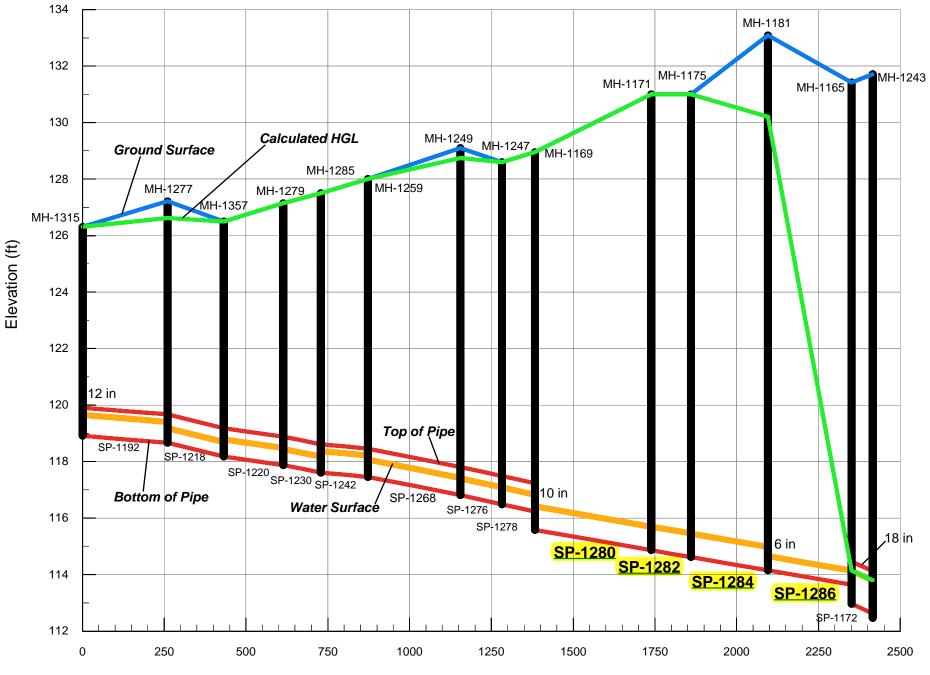


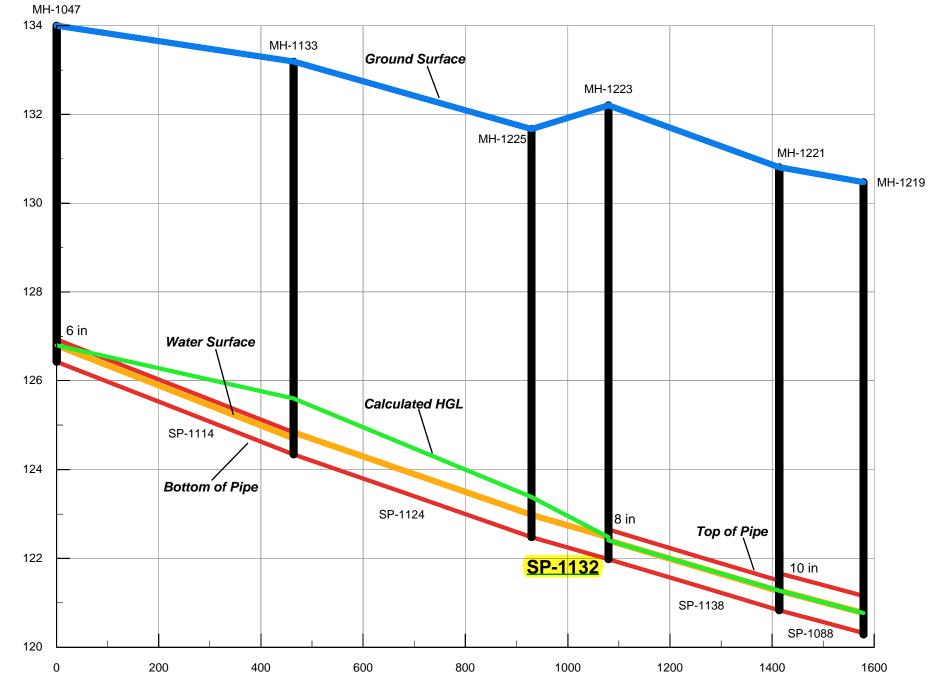
FIGURE A6: Load Allocation for Future Sewer Collection System



ATTACHMENT B


Hydraulic Profiles

Profile for Location 1


Distance (ft)

Profile for Location 2

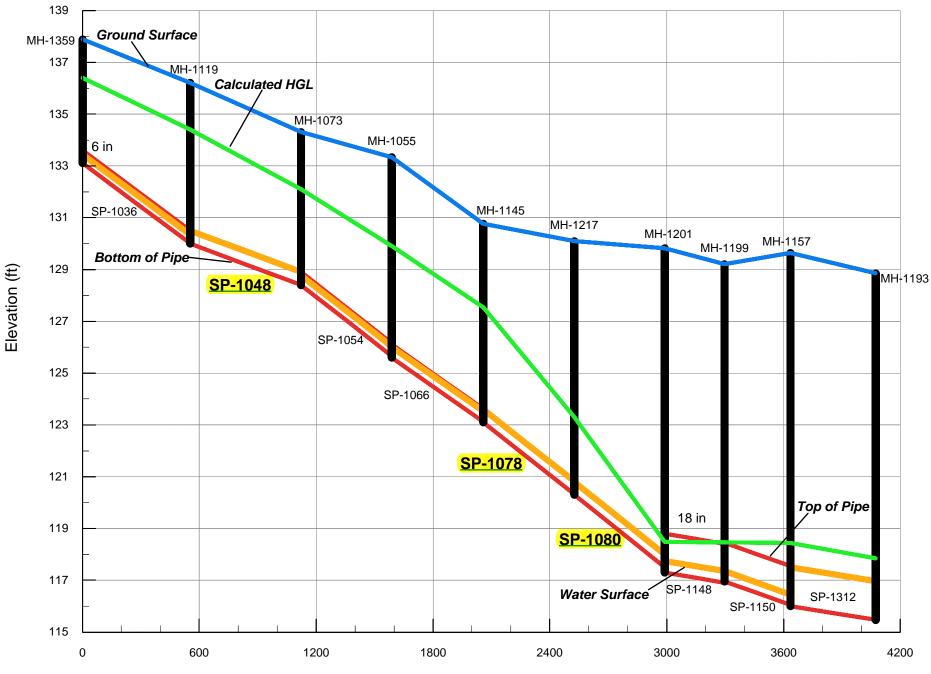
Distance (ft)


Profile for Location a

Elevation (ft)


Distance (ft)

Profile for Location b


Distance (ft)

Profile for Location c

Distance (ft)

Profile for Location d

Distance (ft)

FINAL Technical Memorandum

Southwest Corner Callahan Estates Pump Station Analysis

Initial Model Results of SWCCE Pump Station Scenario
Nick Ponticello, City of Winters
Glenn Hermanson, RMC
Andy Smith, RMC
May 23, 2006
RMC 0098-02

1 Introduction

This TM presents the initial results of the analysis to evaluate the scenario of locating a pump station at the southwest corner of Callahan Estates (SWCCEPS). For the purposes of this TM, the following terms will be used:

Railroad PS Scenario: This is the currently proposed sewer configuration. The main component of the scenario is a proposed pump station on Railroad Street near Neimann Street. The Carter Ranch Pump Station collects sewage from Carter Ranch, Callahan Estates, and Ogando Hudson and pumps north through a 3,640 foot long force main to a new gravity sewer in the Winters Highlands area and flows east along Neimann Street to the proposed pump station (referred to as the "Railroad Pump Station" in this TM). In order to solve the reach of over-loaded sewers (location 1 in master plan), 3,510 feet of existing sewers along Neimann, Hemenway, Anderson, and Railroad are proposed to be upsized.

SWCCEPS Scenario: This is the proposed alternative sewer configuration. The main component of the scenario is a proposed pump station at the southwest corner of Callahan Estates (SWCCEPS). The Carter Ranch Pump Station lifts sewage into the existing dry gravity sewer in Main Street which flows north to the new SWCCEPS located near the storm drain detention basin. The SWCCEPS will serve Callahan, Winters Highland, and the western parcels north of Moody Slough. This pump station pumps directly to the WWTP in a new force main. In order to reduce the flow to the over-loaded sewers in Hemenway, Anderson, and Railroad, a new gravity sewer will extend from Neimann and Hemenway to Railroad and across a soon-to-be-developed parcel to Dutton Street. A new sewer at Adams and Taylor (upstream of the trailer park) diverts flow north and east to the SWCCEPS which reduces the amount of flow in Grant Avenue and onward to the East Street Pump Station.

2 Analysis

A "pump station shed map" for both scenarios is included in Attachment A. Figures of the various profiles are included in Attachment B.

2.1 "Corrections" to Railroad PS Scenario

The following modifications were made to the Railroad PS Scenario presented in the December 2004 Master Plan.

- The trailer park north of Grant Avenue is now loaded at the "backyard manhole" at the northwest corner of the trailer park (MH-2084).
- Creekside development is now loaded to the 10" sewer on Grant Avenue.
- Waggoner Elementary School is now loaded to Edwards Ave/St instead of Grant Avenue.

2.2 Load Allocation

The load allocation sheets are included in Attachments C and D.

2.3 Backyard Sewer Parallel to Taylor Street

The profile of the backyard sewer parallel to Taylor Street with Railroad PS Scenario loadings is presented in **Figure 1**. This profile includes flows from the trailer park and shows that this sewer is not overloaded. During a recent public meeting, a trailer park representative stated that this sewer is overloaded during rain events. The best explanation is that the backyard sewer is partially clogged with roots and/or grease and needs to be thoroughly cleaned. The SWCCEPS Scenario would reduce the flow to this sewer segment but would not reduce the possibility of an overflow since an overflow in this sewer would be caused by a clog, not inadequate capacity.

2.4 Railroad/Anderson/Hemenway/Neimann Sewer (i.e. Location 1)

Figures 2 and 3 present the profiles of the existing sewer along Neimann, Hemenway, Anderson, and Railroad with Railroad PS Scenario and SWCCEPS Scenario loadings respectively. The flow diversion to Dutton Street reduced the amount of surcharging drastically. The SWCCEPS Scenario does have a long reach of surcharging, but the surcharging is minor (less than 18-inches) and the HGL remains at least nine feet below the ground surface. With the SWCCEPS Scenario, additional improvements to these sewers are not necessary.

It should be pointed out that a slight modification to the Railroad PS Scenario would also eliminate the need for these additional improvements. The modification would be to divert the flow at Neimann Street and Hemenway Street and convey that flow to the Railroad PS.

2.5 East Street Trunk (i.e. Location c)

Figures 4 and 5 present the profiles of the existing sewer along East Street from the pump station to Grant and on to Railroad Avenue with Railroad PS Scenario and SWCCEPS Scenario loadings respectively. The profiles are essentially the same with only slight surcharging. The SWCCEPS Scenario has less surcharging at Grant and Railroad.

2.6 Neimann/Dutton Sewer

Figure 6 presents the profile of the proposed sewer (SWCCEPS Scenario) from Neimann Street to Railroad Avenue, across the parcels to be developed to Dutton Street, and south to the existing 8-inch sewer on Dutton. On the profile, MH 2192 is the existing manhole at Neimann Street and Hemenway Street. The last segment in on Grant Avenue and shows the slight surcharge described in section 2.5 above. The amount of flow in Dutton Street is 480 gpm and the existing 8-inch sewers do not have enough capacity to convey this flow. The resulting surcharge is shown in the profile and is not acceptable.

Figure 7 presents the same profile except the existing 8-inch sewers on Dutton have been replaced with new 10-inch sewers. There is no surcharging except for the backwater effect from Grant Avenue. Based on the modeled loading, these pipes, in addition to the first pipe segment upstream on Dutton, should be 10-inch in diameter, and should be placed at a slope of 0.0025. The remaining pipes along this new line should be 8-inch in diameter and should be placed at a slope of 0.0033. The length of new 10-inch is 1,170 feet and the length of new 8-inch sewer is 2,540 feet.

2.7 Main Street Sewer Downstream of CRPS

Figure 8 presents the profile of the existing (currently dry) 8-inch sewer in Main Street from the Carter Ranch Pump Station (CRPS) to the SWCCEPS with SWCCEPS Scenario loadings. The last segment has less slope than the other segments and has minor (4-inches) of surcharging. This small amount of surcharging during PWWF buildout flows is acceptable.

2.8 Lots Along Neimann Street

On the north side of Neimann Street there are a number of undeveloped lots. **Figure 9** presents the profile of the sewer on Neimann Street between Railroad Street and Hemenway Street. Identifying the lots from 1 to 4 with 1 being closest to Railroad Street, the amount of cover is shown in the table below:

Lot	Amount of Cover (feet)
1	5.6
2	5.3
3	4.5
4	3.5

Table 1: Sewer Cover on Neimann Street Near Railroad Avenue

The 3.5 feet of cover (rim to top of pipe) shown for Lot 4 is the amount of cover at the existing manhole at intersection of Neimann Street and Hemenway Street. This is not enough cover to adequately serve these parcels. This appears to be a fatal flaw for the SWCCEPS Scenario. It may be possible to construct a deeper parallel sewer to serve these lots with a small lift (similar to Walnut Lane Lift Station) that would lift the sewage into the Neimann Street Sewer. This lift station would not require any standby power because if a power outage were to occur, the sewage would surcharge up to an elevation where it would passively flow into the Neimann Street sewer.

2.9 Carter Ranch Pump Station

The flow from the CRPS is 354 gpm in the Railroad PS Scenario and 169 gpm in the SWCCEPS Scenario. The SWCCEPS Scenario does not add any flows to the CRPS that were not anticipated when the pump station was designed. Although the pump station was designed for a flow of 125 gpm, the design also included a passive overflow from the wet well to the gravity sewer on Main Street. For these reasons, the SWCEEPS Scenario does not include any improvements to the CRPS.

The Railroad PS Scenario includes improvements to the CRPS and a new force main.

2.10 SWCCE Pump Station

The flow from the SWCCEPS is 1,250 gpm in the SWCCEPS Scenario.

2.11 East Street Pump Station

The flows to the East Street Pump Station (ESPS) are essentially the same for both alternative, 3,110 and 3,130 gpm for the Railroad PS Scenario and SWCCEPS Scenario, respectively. The capacity of the ESPS is approximately 2,600 gpm, therefore the ESPS would need to be expanded in both alternatives.

Initial Model Results of SWCCE Pump Station Scenario

An alternative to expansion of the ESPS would be to implement the following two modifications to the Railroad PS Scenario.

- Route the future Gateway force main north to the proposed gravity sewer on Main Street north of Grant Ave., which flows north to the future pump station on Moody Slough Rd. This would divert 308 gpm from the ESPS.
- Divert all the flow from the Grant Avenue sewers to the CRPS as they pass Main Street near the CRPS. This would divert 390 gpm. This would require a new sewer from Grant Avenue to the CRPS.

2.12 East Street Force Main

The design flows in the East Street Force Main are essentially the same for both alternatives. An updated analysis of the ESFM was performed using the design flows of 3,110 and 3,130 gpm as part of this evaluation. The results show that as long as the Hazen-Williams friction factor 'C' does not drop below 100, the pressures within the ESFM are acceptable, although quite near the design parameters of the force main. The recommendation in the draft Master Plan to measure and monitor the headloss in the force main (and using the data to calculate the friction coefficient) continues to be applicable.

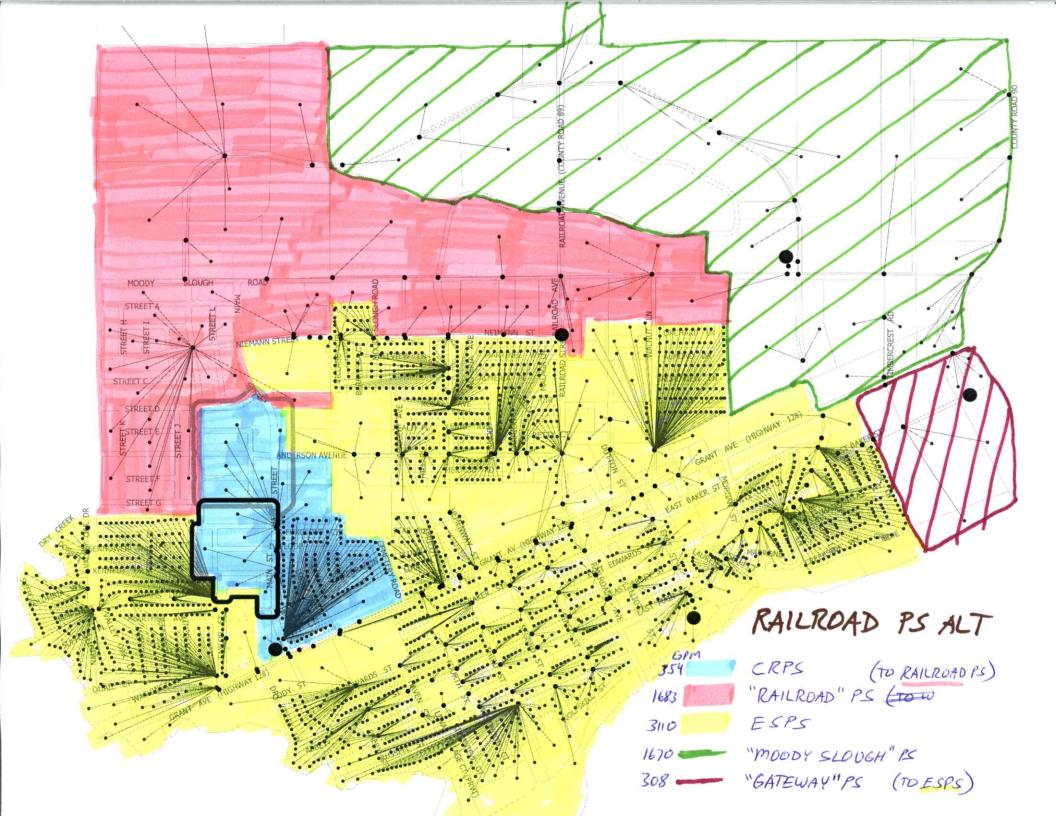
A break in the East Street Force Main is an event that may occur for a variety of reasons, the most common of which is being accidentally broken by a contractor excavating in the vicinity of the force main. For this reason, it is prudent to either have a parallel force main, a Force Main Rupture Plan, or both. There is an old clarifier at the East Street Pump Station which will contain flows for a short time (about an hour), but shouldn't be the only component of a Force Main Rupture Plan.

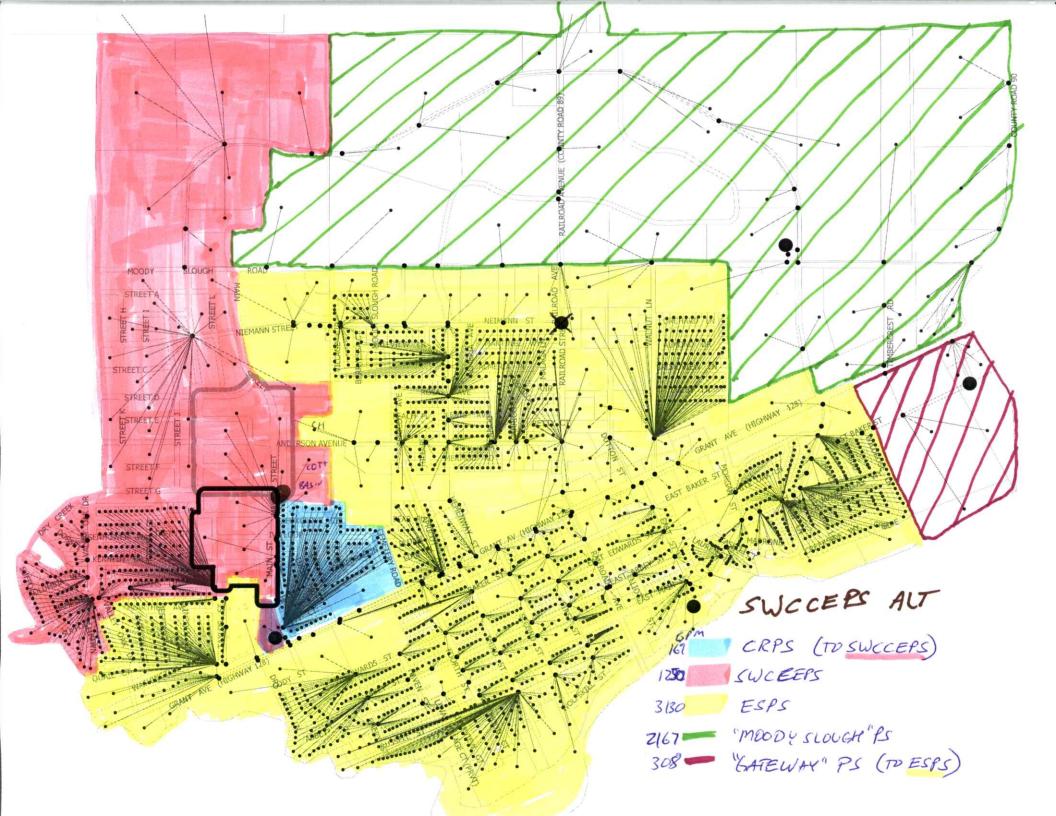
3 Alternative Comparison

The alternatives are compared in the table below.

Description	Railroad PS Scenario	Modified Railroad PS Scenario ⁽¹⁾	SWCCEPS Scenario
Anderson Ave/Hemenway St Sewer Upsize	Yes	No	No
Neimann St to Dutton Street Sewer	No	No	Yes
Deeper Parallel Sewer and PS in Neimann	No	No	Yes
SWCCE Pump Station	No	No	Yes
SWCCE Pump Station Force Main	No	No	Yes
Railroad Pump Station	Yes	Yes	No
Railroad Pump Station Force Main	Yes	Yes	Maybe ⁽²⁾
Carter Ranch Pump Station Expansion	Yes	Yes	No
Carter Ranch Pump Station Force Main	Yes	Yes	No
Moody Slough Pump Station	Yes	Yes	Larger

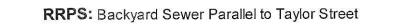
(1) The "Modified" Railroad PS Scenario diverts the flow from the existing manhole at Neimann and Hemenway and conveys it to the Railroad PS.


(2) A parallel force main to the existing East Street Force Main should be constructed as discussed in Section 2.12 above.


4 **Recommendation**

All three alternatives are feasible and approximately equal. While a rigorous comparison of all alternatives was not performed, the Modified Railroad Pump Station Scenario appears to be slightly better than the other two because it has less flow to the ESPS and it can serve the lots north of Neimann without a pump station.

Attachment A


Pump Station Shed Map

Attachment B

Profiles

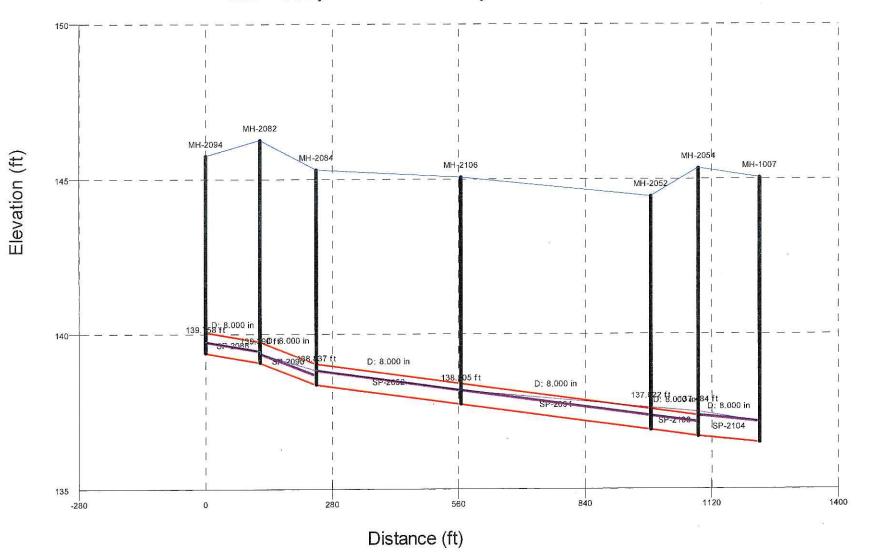


Figure 1

RRPS: Railroad/Anderson/Hemenway/Niemann Sewer

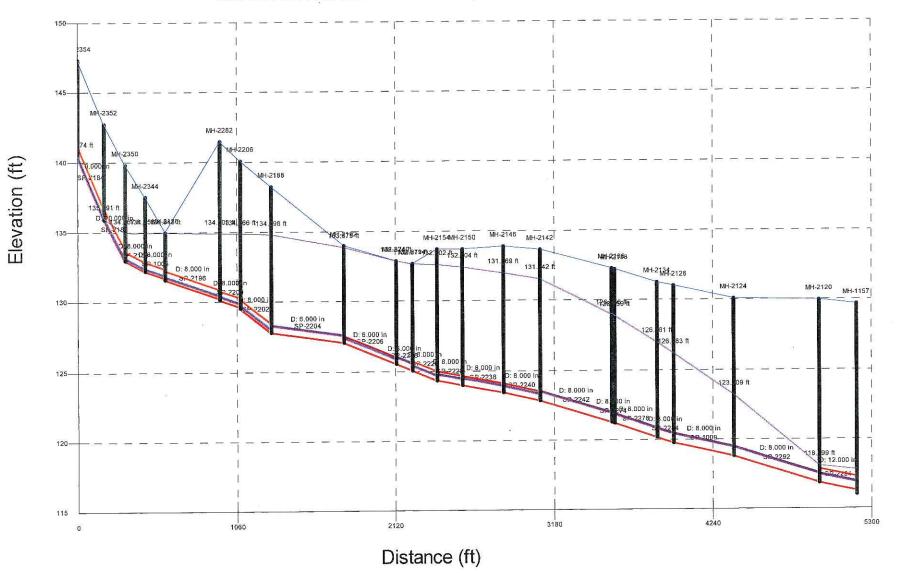
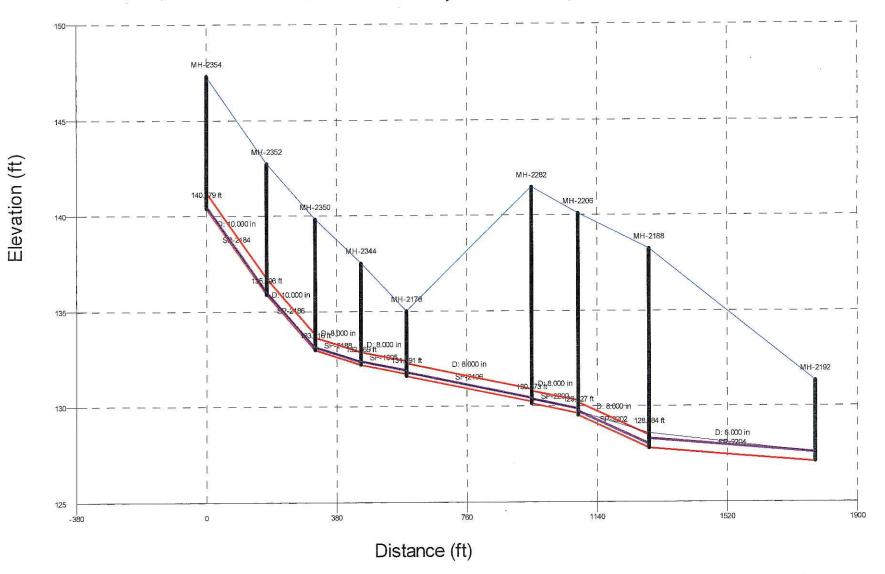
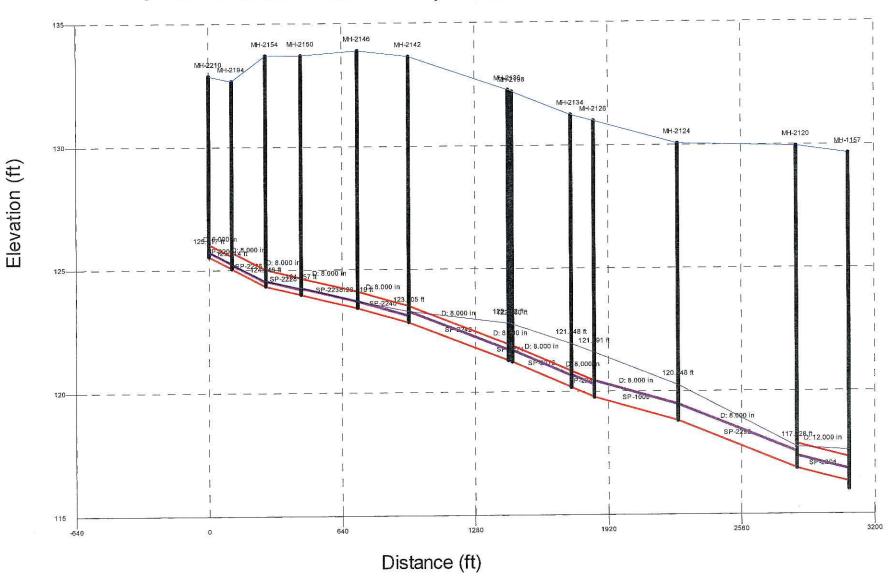




Figure 2

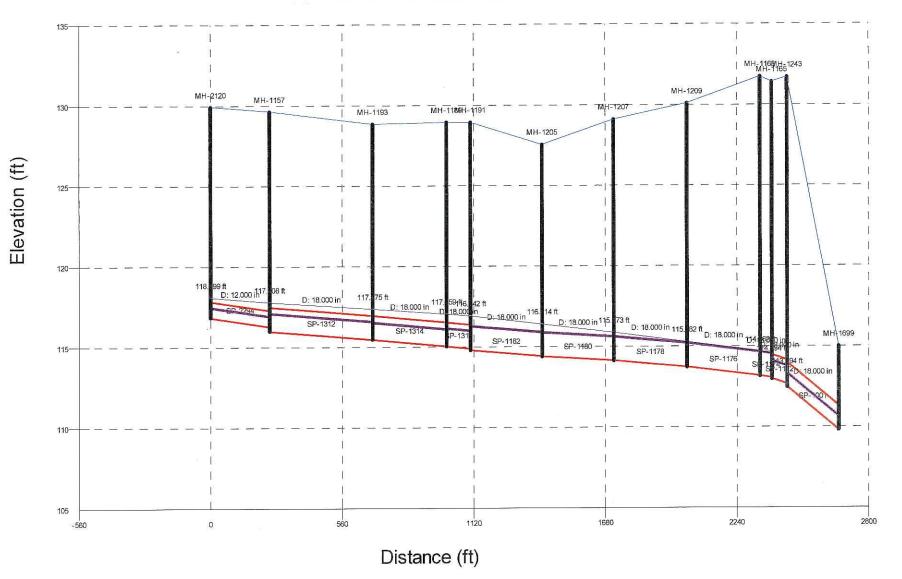
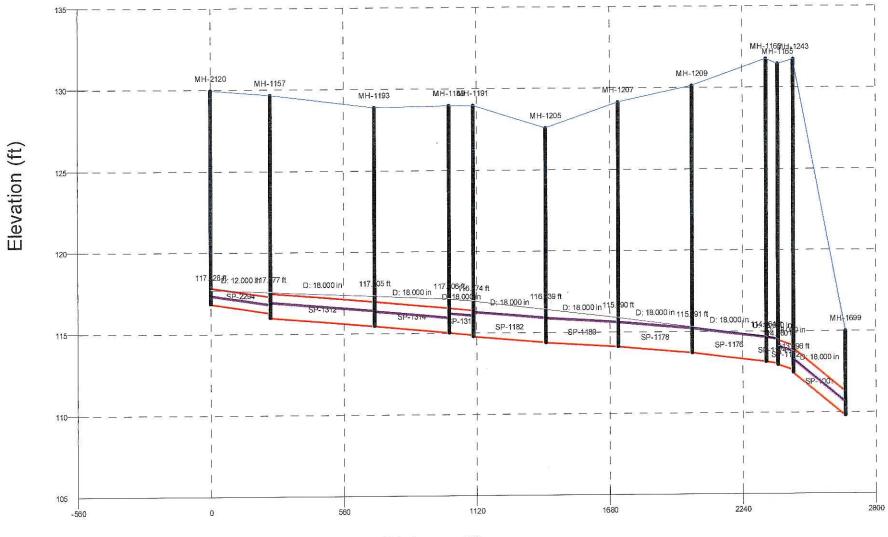
SWCCEPS: Railroad/Anderson/Hemenway/Niemann Sewer (Niemann portion only)

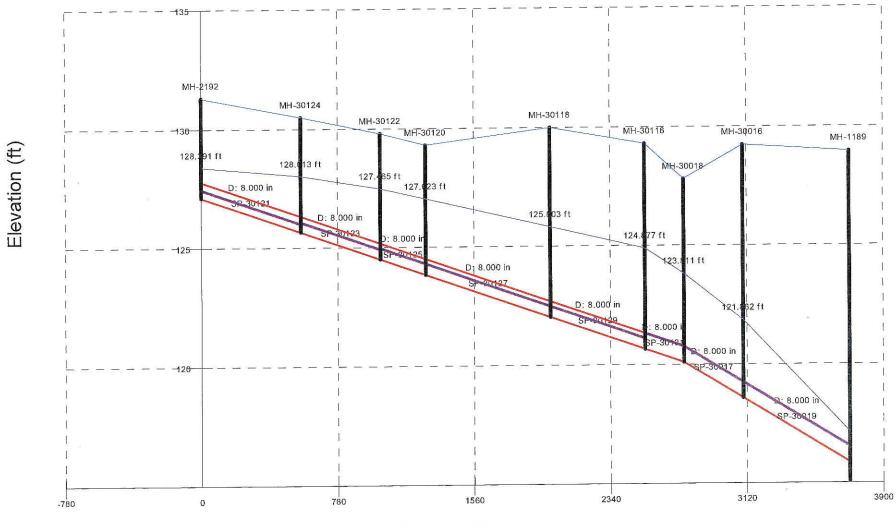
Figure 3a

SWCCEPS: Railroad/Anderson/Hemenway/Niemann Sewer (Hemenway to Railroad only)

Figure 3b

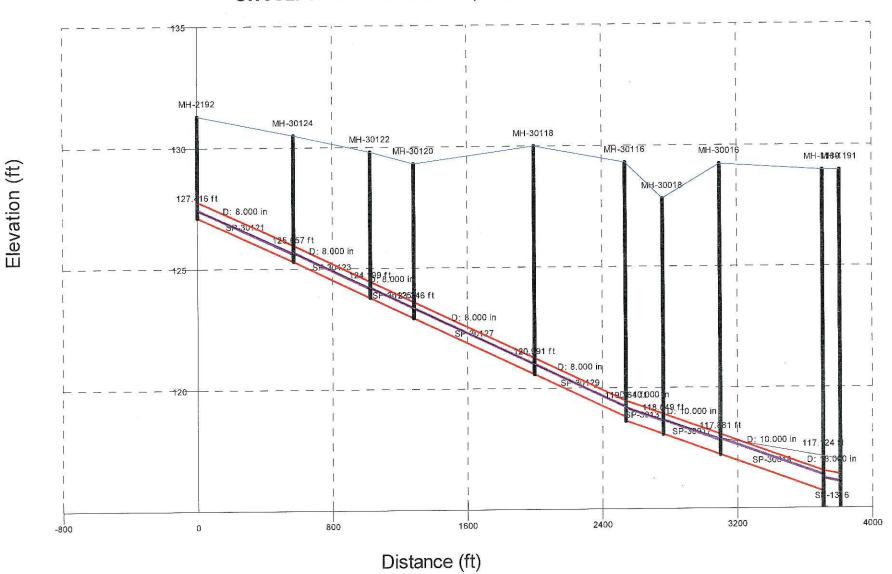
RRPS: East Street Trunk


Figure 4

SWCCEPS: East Street Trunk

Distance (ft)


Figure 5

SWCCEPS: Niemann/Dutton - Connect to Existing

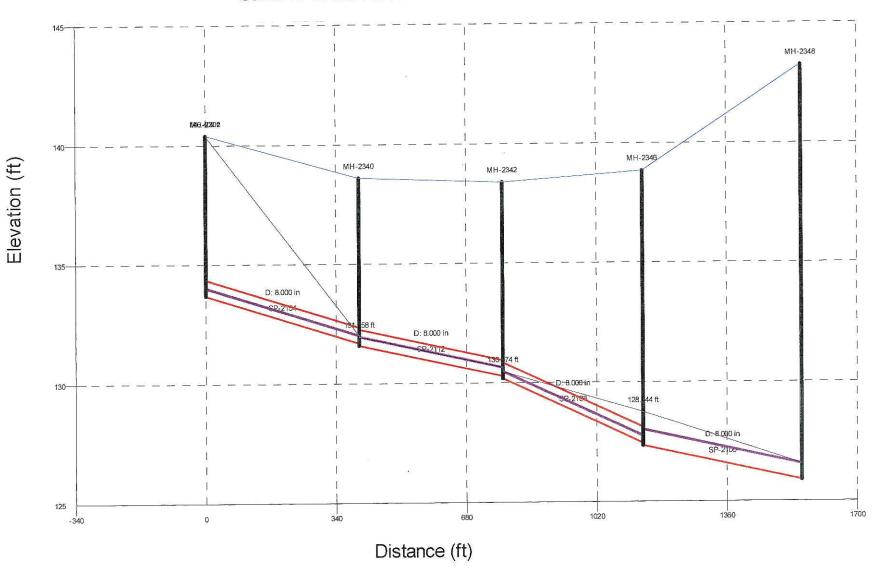

Distance (ft)

Figure 6

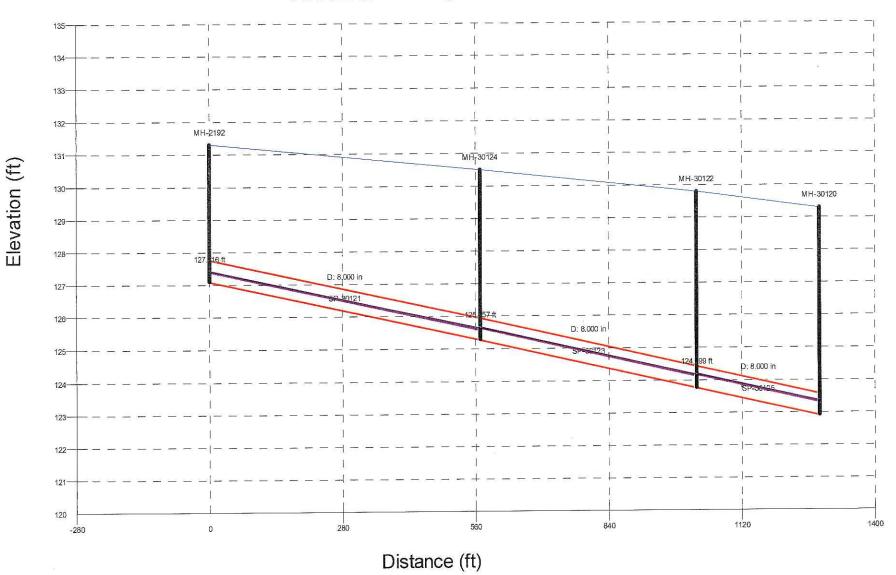

SWCCEPS: Niemann/Dutton - Proposed

Figure 7

SWCCEPS: Main Street Sewer Downstream of CRPS

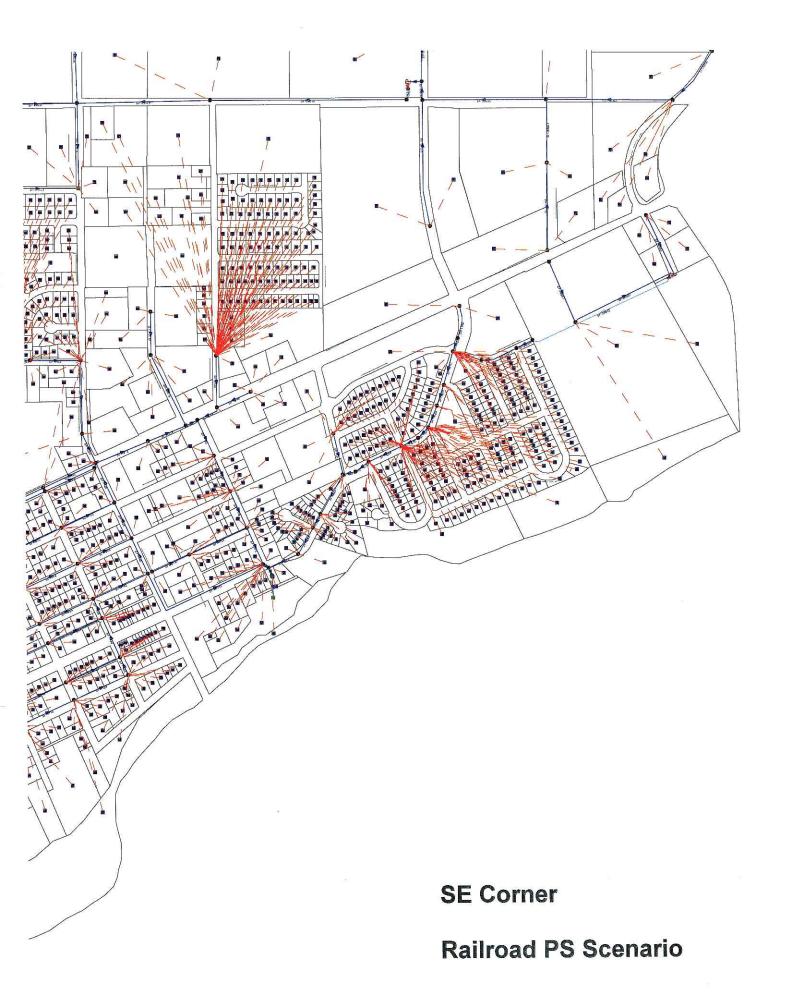
Figure 8

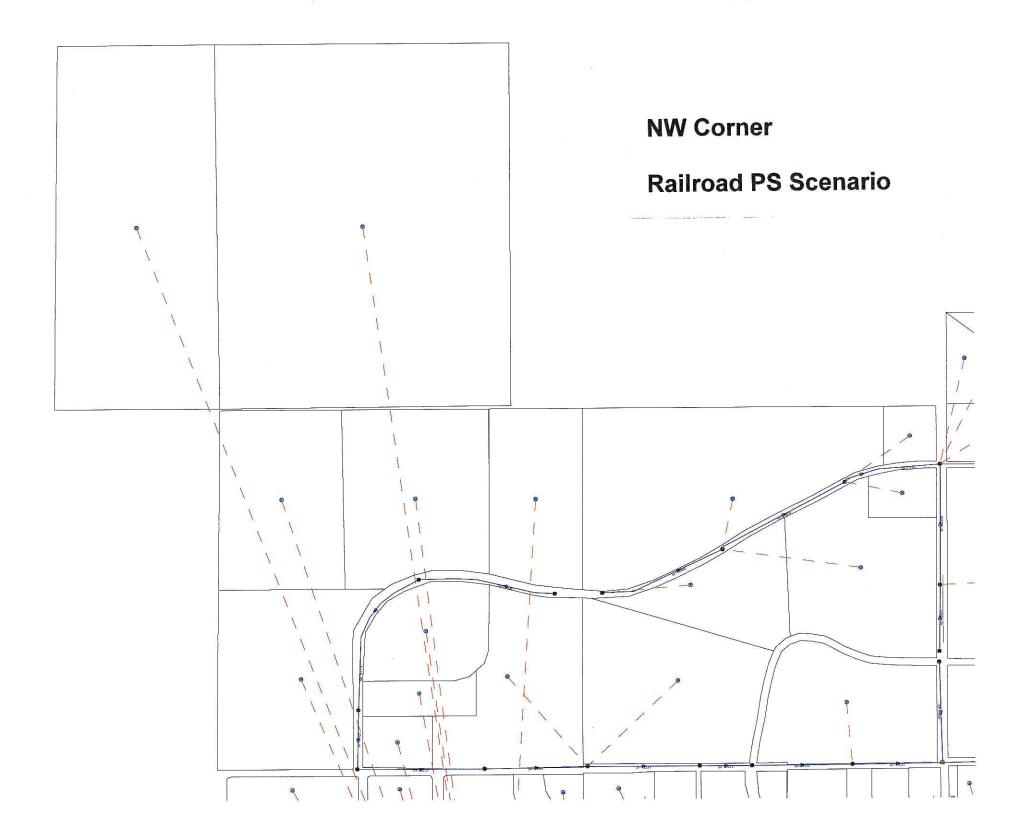
SWCCEPS: Lots Along Niemann Street

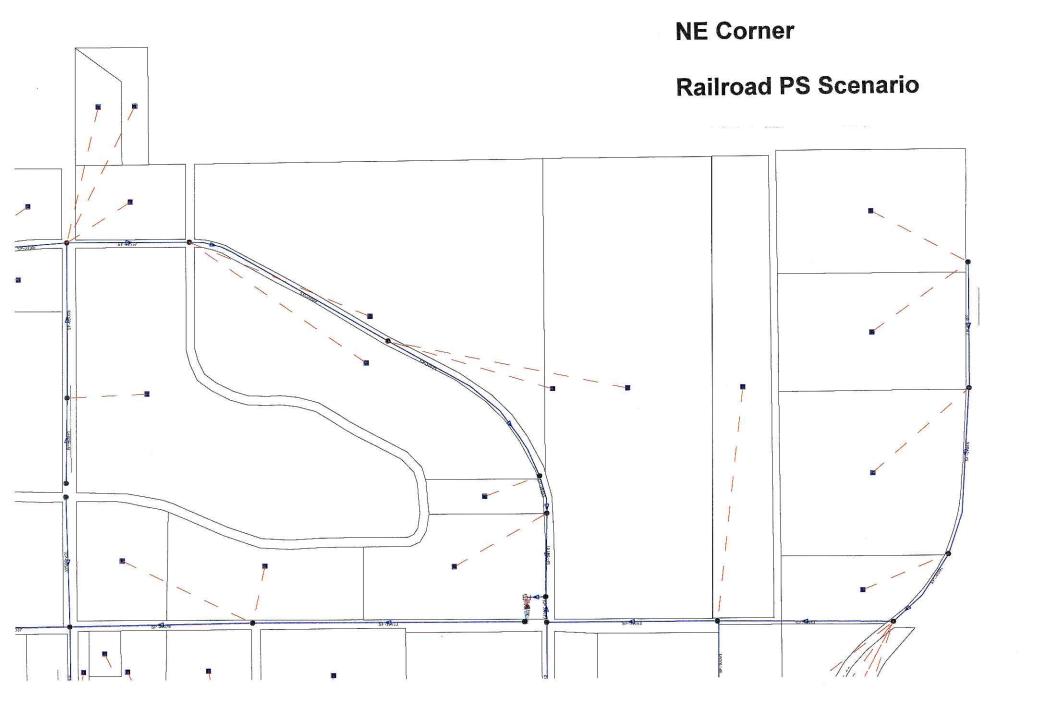
Figure 9

Attachment C

Load Allocation Figures: Railroad PS Scenario

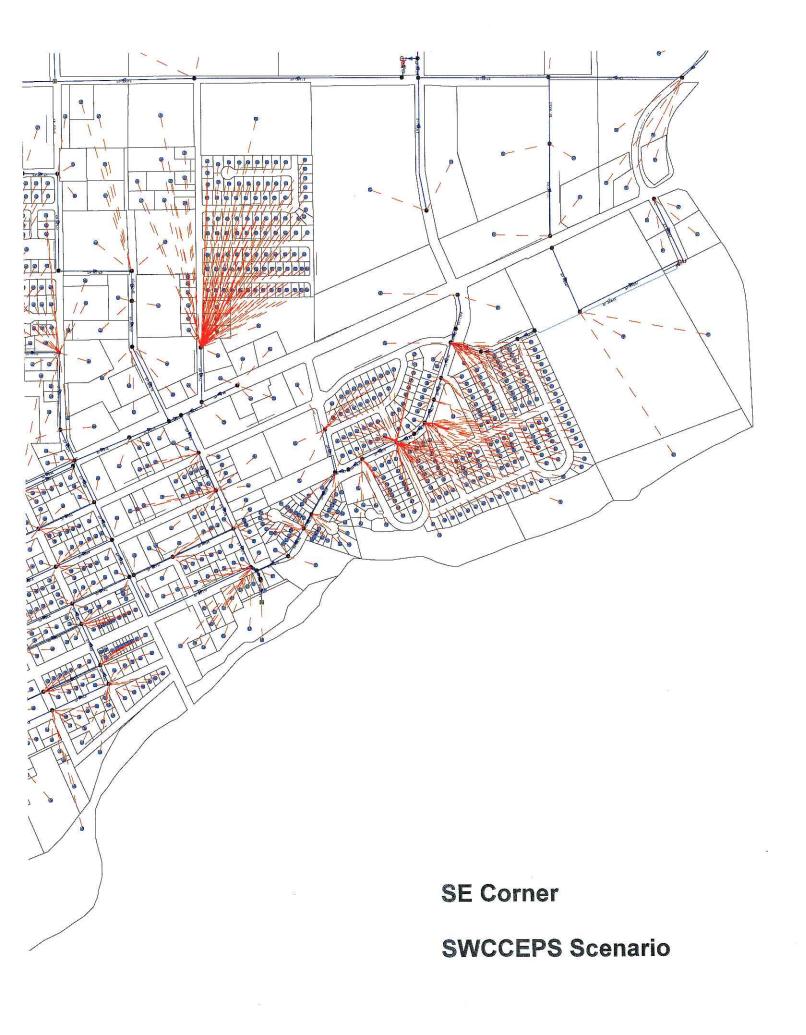


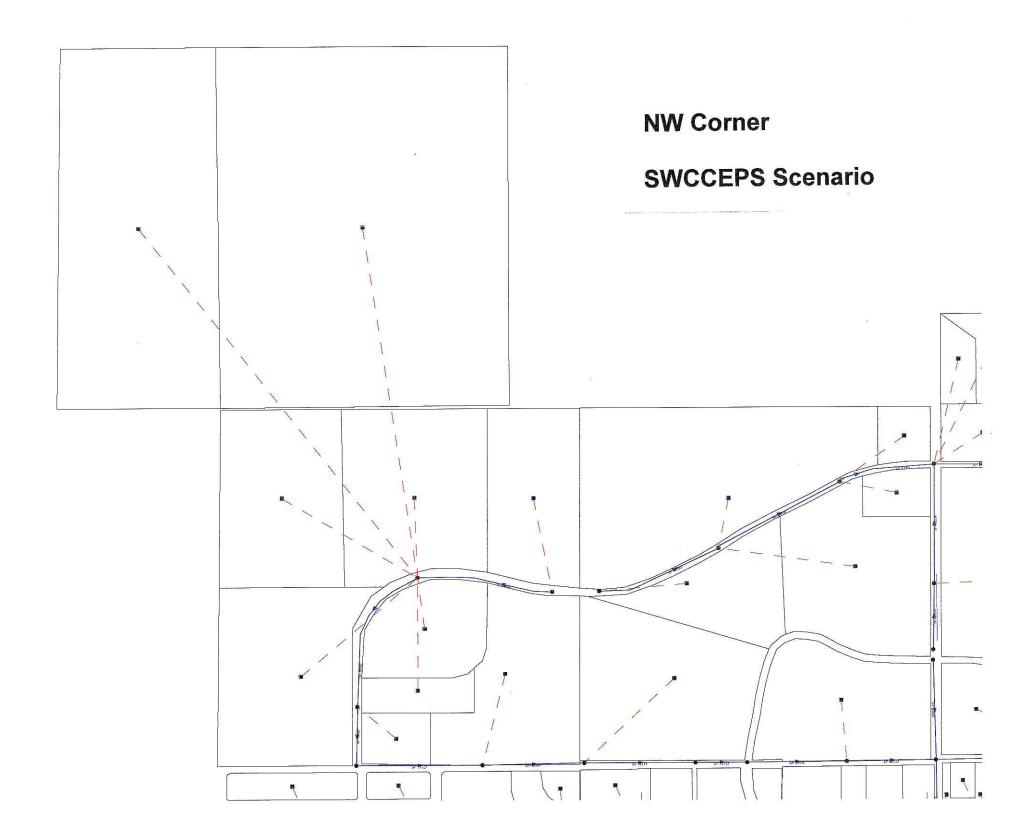

		z
/		
1		
$\boldsymbol{\lambda}$		
\backslash		
7		
verview	N	
ario		

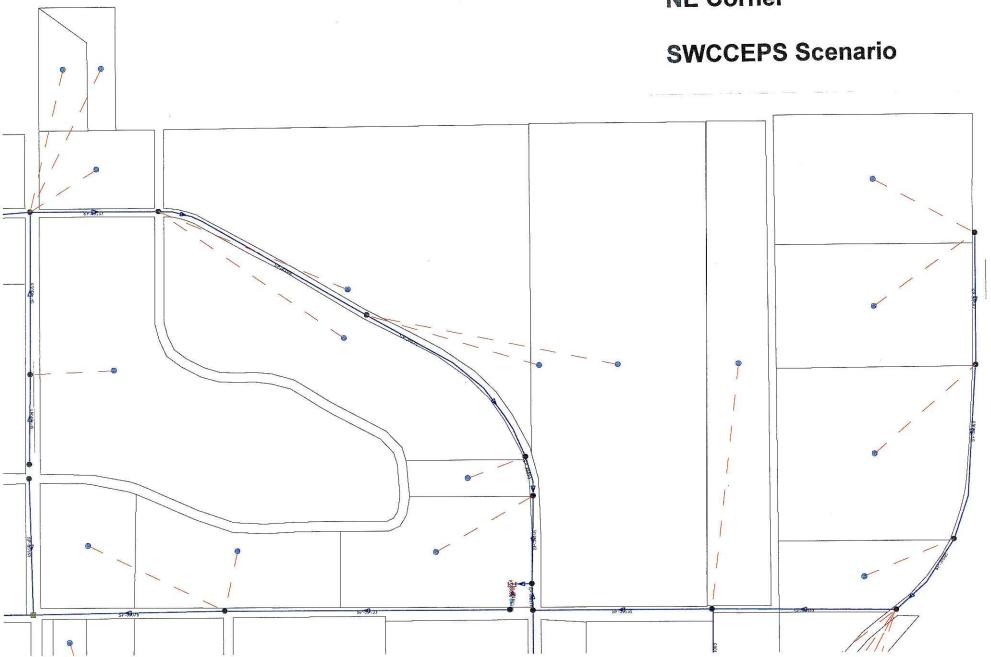


SW Corner

Railroad PS Scenario


Attachment D


Load Allocation Figures: SWCCEPS Scenario



SWCCEPS Scenario

NE Corner

APPENDIX G

CD CONTAINING FINAL REPORT AND ALL APPENDICES

2868 Prospect Park Dr., Suite 130 Rancho Cordova, CA 95670 916.273.1500 T 916.273.1501 F